zzl commited on
Commit
f4ada59
·
0 Parent(s):

Initial commit (clean history)

Browse files
.gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ *.bin filter=lfs diff=lfs merge=lfs -text
2
+ *.pt filter=lfs diff=lfs merge=lfs -text
3
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
4
+ *.tar filter=lfs diff=lfs merge=lfs -text
5
+ *.pth filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .DS_Store
2
+ Icon?
3
+ .DS_Store
LICENSE.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pi-Lab License 1.0
2
+
3
+ Copyright 2024 Pi-Lab
4
+
5
+ Redistribution and use for non-commercial purpose in source and
6
+ binary forms, with or without modification, are permitted provided
7
+ that the following conditions are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright
10
+ notice, this list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright
13
+ notice, this list of conditions and the following disclaimer in
14
+ the documentation and/or other materials provided with the
15
+ distribution.
16
+
17
+ 3. Neither the name of the copyright holder nor the names of its
18
+ contributors may be used to endorse or promote products derived
19
+ from this software without specific prior written permission.
20
+
21
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
+
33
+ In the event that redistribution and/or use for commercial purpose in
34
+ source or binary forms, with or without modification is required,
35
+ please contact the contributor(s) of the work.
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: other
4
+ tags:
5
+ - low-level-vision
6
+ - all-in-one image-restoration
7
+ language:
8
+ - en
9
+ pipeline_tag: image-to-image
10
+ model-index:
11
+ - name: RAM / RAM++
12
+ results:
13
+ - task:
14
+ type: image-to-image
15
+ name: All-in-One Image Restoration
16
+ dataset:
17
+ name: placeholder
18
+ type: image
19
+ metrics:
20
+ - name: PSNR
21
+ type: psnr
22
+ value: 0.0
23
+ ---
24
+ This is the official pretrained models for the paper.
25
+ >**Restore Anything with Masks:Leveraging Mask Image Modeling for Blind All-in-One Image Restoration**<br> [Chujie Qin](https://github.com/Dragonisss), [Ruiqi Wu](https://rq-wu.github.io/), [Zikun Liu](), [Xin Lin](https://linxin0.github.io/), [Chunle Guo](https://scholar.google.com/citations?user=RZLYwR0AAAAJ&hl=en), [Hyun Hee Park](s), [Chongyi Li<sup>†</sup>](https://li-chongyi.github.io/)<br/>
26
+ > ( † indicates corresponding author )<br/>
27
+ > In ECCV 2024, \[[HomePage](https://rq-wu.github.io/projects/RAM/index.html)\], \[[Paper Link](https://arxiv.org/abs/2409.19403v1)\]
28
+
29
+ > **RAM++: <u>R</u>obust Representation Learning via <u>A</u>daptive <u>M</u>ask for All-in-One Image Restoration**<br>
30
+ > [Zilong Zhang<sup>*</sup>](https://github.com/Zilong-Zhang003), [Chujie Qin<sup>*</sup>](https://github.com/DragonisCV), [Chunle Guo](https://mmcheng.net/clguo/), [Yong Zhang](), [Chao Xue](), [Ming-Ming Cheng](https://mmcheng.net/cmm/), [Chongyi Li<sup>†</sup>](https://li-chongyi.github.io/)<br/>
31
+ > (<sup>*</sup>indicates equal contribution; <sup>†</sup> indicates corresponding author)<br/>
32
+ > arxiv preprint, \[[HomePage](https://zilong-zhang003.github.io/RAM2.0/)\], \[[Paper Link](https://arxiv.org/abs/2509.12039)\]
33
+
34
+
35
+ # Model description
36
+ ## RAM
37
+ This method is architecture-agnostic and can be trained with any model. \
38
+ Here we provide the pre-trained and fine-tuned weights for two representative models: <strong>[PromptIR](https://github.com/va1shn9v/PromptIR)</strong> and <strong>[SwinIR](https://github.com/JingyunLiang/SwinIR)</strong>.
39
+ ## RAM_plus
40
+ <strong>AdaSAM</strong> is a ViT-based, pixel-level mask generator. It analyzes correlations between image tokens and applies masks to regions that are semantically and texturally rich.
41
+
42
+ <strong>RestormerWoSkip</strong> is built on <strong>[Restormer](https://github.com/swz30/Restormer)</strong>; it differs by removing the long-range residual connections.
43
+
44
+ <strong>RestormerRFR</strong> regularizes via an efficient feature-fusion strategy that leverages DINOv2’s semantic consistency and degradation invariance.
45
+
46
+ <strong>Different folders</strong> contain model weights trained under configurations with different numbers of tasks.
47
+
48
+ # How to use
49
+ For full instructions and runnable scripts, see the [code repository](https://github.com/DragonisCV/RAM/)
50
+ ## RAM
51
+ ### Pre-training:
52
+ ```python
53
+ mask, mask_token = Random(img) #pixel_level
54
+ output = PromptIR(img, mask, mask_token)
55
+ ```
56
+ ### Fine-tuning:
57
+ ```python
58
+ output = PromptIR(img, mask=None, mask_token=None)
59
+ ```
60
+ ## RAM_plus
61
+ ### Pre-training:
62
+ ```python
63
+ mask, mask_token = AdaSAM(img)
64
+ output = RestormerWoSkip(img, mask, mask_token)
65
+ ```
66
+ ### Fine-tuning:
67
+ ```python
68
+ dino_features = DINOv2(img)
69
+ output = RestormerRFR(img, mask=None, mask_token=None, dino_features)
70
+ ```
71
+
72
+ # Citation
73
+ If you find our repo useful for your research, please consider citing our paper:
74
+ ```bibtex
75
+ @inproceedings{qin2024restore,
76
+ title={Restore Anything with Masks: Leveraging Mask Image Modeling for Blind All-in-One Image Restoration},
77
+ author={Qin, Chu-Jie and Wu, Rui-Qi and Liu, Zikun and Lin, Xin and Guo, Chun-Le and Park, Hyun Hee and Li, Chongyi},
78
+ booktitle={European Conference on Computer Vision},
79
+ pages={364--380},
80
+ year={2024},
81
+ organization={Springer}
82
+ }
83
+
84
+ @misc{zhang2025ramrobustrepresentationlearning,
85
+ title={RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration},
86
+ author={Zilong Zhang and Chujie Qin and Chunle Guo and Yong Zhang and Chao Xue and Ming-Ming Cheng and Chongyi Li},
87
+ year={2025},
88
+ eprint={2509.12039},
89
+ archivePrefix={arXiv},
90
+ primaryClass={cs.CV},
91
+ url={https://arxiv.org/abs/2509.12039},
92
+ }
93
+ ```
ram/ram_promptir_finetune.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5497063955d8a8285b53f5cb39f72e446296e3dc8df363392fbe498c3ac86c8
3
+ size 141708965
ram/ram_promptir_pretrain.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:050355603860b56654d9dabcd963e9157909ee4fa38eed95c8dca1ff1834175a
3
+ size 283418451
ram/ram_swinir_finetune.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ca5261ea6e48c099d05664b34385f0701ee7fc2cc6ec1a06c58fa10d17e96a0
3
+ size 66309678
ram/ram_swinir_pretrain.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54e076ac7a7bf1286a5613f8473156975c508eb3e5462f3d0486349d7d41b577
3
+ size 132619947
ram_plus/3task/AdaSAM_pretrained.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6272bf3c794f2c938f29a72c153ceb1b37ae4a1db43c8a364c0fb61a9c617c42
3
+ size 59467679
ram_plus/3task/RestormerRFR.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:841f6de18d888e61e7c6bc74cb683b57efb25365fa4cd6a7502255580cb7d06c
3
+ size 327231278
ram_plus/3task/RestormerRFR_ratio0.3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9af2db2ca6e7745de7ad96ffa1bf9f86944208211b8e8918a125edb77981b9
3
+ size 327231278
ram_plus/3task/RestormerWoSkip.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a793b2907ca760261c02e14e684122fce17b2115f6b3a6e788af023e72a3fbb3
3
+ size 209380959
ram_plus/5task/AdaSAM_pretrained.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b2d1596161c81a88fa2df466e5e51454ad1aa316dc890e61e8e379c8eec9c96
3
+ size 59467679
ram_plus/5task/RestormerRFR.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a40ea868e580e9d7c65ab02a2f783c57423dc18fc86c443acb43cf3eaf22db
3
+ size 327231721
ram_plus/5task/RestormerWoSkip.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b6eb8bffc17f761376daadfb055d890909e111f992d6b5b6f011937e4ffc924
3
+ size 209380959
ram_plus/7task/AdaSAM_pretrained.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20e5ecc128b658c21a02edbfdb5d0c36689ebffd13cd2d3ad2c89ffa94834193
3
+ size 59467679
ram_plus/7task/RestormerRFR.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:020d66ea48ce11d7ad1ac1e62737466e705f950c62ecf0ddd48701ed6e3d3cdd
3
+ size 327231278
ram_plus/7task/RestormerRFR_ratio0.3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b14736c5982ebb988857deb8ff34f2beff4720df8e38c5f165021a9aaadfe59
3
+ size 327231721
ram_plus/7task/RestormerWoSkip.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d59a7afc9a0d9753e5b506fcf5e0344191790a4d65117dfc9b277a21ffc84778
3
+ size 209380959