File size: 9,865 Bytes
cb94537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# ------------------------------------------------------------------------------
# Copyright 2025 2toINF (https://github.com/2toINF)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------

from __future__ import annotations
from typing import Iterable, Tuple, Dict, Type
import torch
import torch.nn as nn

# =============================================================================
# Registry
# =============================================================================
ACTION_REGISTRY: Dict[str, Type["BaseActionSpace"]] = {}


def register_action(name: str):
    """Decorator for registering a new action space."""
    def _wrap(cls):
        key = name.lower()
        if key in ACTION_REGISTRY:
            raise KeyError(f"ActionSpace '{key}' already registered -> {ACTION_REGISTRY[key]}")
        ACTION_REGISTRY[key] = cls
        cls.name = key
        return cls
    return _wrap


def build_action_space(name: str, **kwargs) -> "BaseActionSpace":
    """Instantiate a registered action space by name."""
    key = name.lower()
    if key not in ACTION_REGISTRY:
        raise KeyError(f"Unknown action space '{name}'. Available: {list(ACTION_REGISTRY.keys())}")
    return ACTION_REGISTRY[key](**kwargs)


# =============================================================================
# Base class
# =============================================================================
class BaseActionSpace(nn.Module):
    """
    Abstract base class for all action-space definitions.

    Each subclass defines:
      - `dim_action`: dimension of the action vector.
      - `gripper_idx`: indices of gripper channels.
      - `compute_loss(pred, target)`: supervised loss for this space.
      - `preprocess(proprio, action, mode)`: pre-step modifications.
      - `postprocess(action)`: post-step corrections (e.g. apply sigmoid).
    """

    name: str = "base"
    dim_action: int = 0
    gripper_idx: Tuple[int, ...] = ()

    def __init__(self):
        super().__init__()

    # ---------------------------------------------------------------------
    # Core supervised loss
    # ---------------------------------------------------------------------
    def compute_loss(self, pred: torch.Tensor, target: torch.Tensor) -> Dict[str, torch.Tensor]:
        raise NotImplementedError

    def forward(self, pred: torch.Tensor, target: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Alias for compute_loss."""
        return self.compute_loss(pred, target)

    # ---------------------------------------------------------------------
    # Space-level hooks
    # ---------------------------------------------------------------------
    def preprocess(
        self,
        proprio: torch.Tensor,
        action: torch.Tensor,
        mode: str = "train",
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Default: return unchanged."""
        return proprio, action

    def postprocess(self, action: torch.Tensor) -> torch.Tensor:
        """Default: return unchanged."""
        return action


# =============================================================================
# Utilities
# =============================================================================
def _ensure_indices_valid(D: int, idx: Iterable[int], name: str) -> None:
    bad = [i for i in idx if i < 0 or i >= D]
    if bad:
        raise IndexError(f"{name} contains out-of-range indices {bad} for action dim D={D}")


# =============================================================================
# Implementations
# =============================================================================
@register_action("ee6d")
class EE6DActionSpace(BaseActionSpace):
    """End-effector layout with xyz, 6D rotation, and gripper channels."""

    dim_action = 20
    gripper_idx = (9, 19)
    GRIPPER_SCALE = 1.0
    XYZ_SCALE = 500.0
    ROT_SCALE = 10.0

    POS_IDX_1 = (0, 1, 2)
    POS_IDX_2 = (10, 11, 12)
    ROT_IDX_1 = (3, 4, 5, 6, 7, 8)
    ROT_IDX_2 = (13, 14, 15, 16, 17, 18)

    def __init__(self):
        super().__init__()
        self.mse = nn.MSELoss()
        self.bce = nn.BCEWithLogitsLoss()

    def compute_loss(self, pred, target):
        assert pred.shape == target.shape, "pred/target shapes must match"
        B, T, D = pred.shape
        _ensure_indices_valid(D, self.gripper_idx, "gripper_idx")

        # Gripper BCE
        g_losses = [self.bce(pred[:, :, gi], target[:, :, gi]) for gi in self.gripper_idx]
        gripper_loss = sum(g_losses) / len(self.gripper_idx) * self.GRIPPER_SCALE

        # XYZ position
        pos_loss = (
            self.mse(pred[:, :, self.POS_IDX_1], target[:, :, self.POS_IDX_1]) +
            self.mse(pred[:, :, self.POS_IDX_2], target[:, :, self.POS_IDX_2])
        ) * self.XYZ_SCALE

        # Rotation 6D
        rot_loss = (
            self.mse(pred[:, :, self.ROT_IDX_1], target[:, :, self.ROT_IDX_1]) +
            self.mse(pred[:, :, self.ROT_IDX_2], target[:, :, self.ROT_IDX_2])
        ) * self.ROT_SCALE

        return {
            "position_loss": pos_loss,
            "rotate6D_loss": rot_loss,
            "gripper_loss": gripper_loss,
        }

    def preprocess(self, proprio, action, mode="train"):
        """Zero-out gripper channels in proprio/action."""
        proprio_m = proprio.clone()
        action_m = action.clone()
        proprio_m[..., self.gripper_idx] = 0.0
        action_m[..., self.gripper_idx] = 0.0
        return proprio_m, action_m

    def postprocess(self, action: torch.Tensor) -> torch.Tensor:
        """Apply sigmoid to gripper logits."""
        if action.size(-1) > max(self.gripper_idx):
            action[..., self.gripper_idx] = torch.sigmoid(action[..., self.gripper_idx])
        return action


@register_action("joint")
class JointActionSpace(BaseActionSpace):
    """Joint-space layout with joints + gripper only."""

    dim_action = 14
    gripper_idx = (6, 13)
    GRIPPER_SCALE = 0.1
    JOINTS_SCALE = 1.0

    def __init__(self):
        super().__init__()
        self.mse = nn.MSELoss()
        self.bce = nn.BCEWithLogitsLoss()

    def compute_loss(self, pred, target):
        assert pred.shape == target.shape
        B, T, D = pred.shape
        _ensure_indices_valid(D, self.gripper_idx, "gripper_idx")

        g_losses = [self.bce(pred[:, :, gi], target[:, :, gi]) for gi in self.gripper_idx]
        gripper_loss = sum(g_losses) / len(self.gripper_idx) * self.GRIPPER_SCALE

        joints_idx = tuple(i for i in range(D) if i not in set(self.gripper_idx))
        joints_loss = self.mse(pred[:, :, joints_idx], target[:, :, joints_idx]) * self.JOINTS_SCALE

        return {
            "joints_loss": joints_loss,
            "gripper_loss": gripper_loss,
        }

    def preprocess(self, proprio, action, mode="train"):
        """Zero-out gripper channels in proprio/action."""
        proprio_m = proprio.clone()
        action_m = action.clone()
        proprio_m[..., self.gripper_idx] = 0.0
        action_m[..., self.gripper_idx] = 0.0
        return proprio_m, action_m

    def postprocess(self, action: torch.Tensor) -> torch.Tensor:
        """Apply sigmoid to gripper logits."""
        if action.size(-1) > max(self.gripper_idx):
            action[..., self.gripper_idx] = torch.sigmoid(action[..., self.gripper_idx])
        return action


@register_action("agibot_ee6d")
class AGIBOTEE6DActionSpace(BaseActionSpace):
    """AGI-bot variant of EE6DActionSpace using MSE for all components."""

    dim_action = 20
    gripper_idx = (9, 19)
    GRIPPER_SCALE = 10.0
    XYZ_SCALE = 500.0
    ROT_SCALE = 10.0
    POS_IDX_1 = (0, 1, 2)
    POS_IDX_2 = (10, 11, 12)
    ROT_IDX_1 = (3, 4, 5, 6, 7, 8)
    ROT_IDX_2 = (13, 14, 15, 16, 17, 18)

    def __init__(self):
        super().__init__()
        self.mse = nn.MSELoss()

    def compute_loss(self, pred, target):
        assert pred.shape == target.shape
        B, T, D = pred.shape
        _ensure_indices_valid(D, self.gripper_idx, "gripper_idx")

        gripper_loss = self.mse(pred[:, :, self.gripper_idx], target[:, :, self.gripper_idx]) * self.GRIPPER_SCALE
        pos_loss = (
            self.mse(pred[:, :, self.POS_IDX_1], target[:, :, self.POS_IDX_1]) +
            self.mse(pred[:, :, self.POS_IDX_2], target[:, :, self.POS_IDX_2])
        ) * self.XYZ_SCALE
        rot_loss = (
            self.mse(pred[:, :, self.ROT_IDX_1], target[:, :, self.ROT_IDX_1]) +
            self.mse(pred[:, :, self.ROT_IDX_2], target[:, :, self.ROT_IDX_2])
        ) * self.ROT_SCALE

        return {
            "position_loss": pos_loss,
            "rotate6D_loss": rot_loss,
            "gripper_loss": gripper_loss,
        }

    def preprocess(self, proprio, action, mode="train"):
        """No preprocessing applied in AGIBOT variant."""
        return proprio, action

    def postprocess(self, action: torch.Tensor) -> torch.Tensor:
        """AGIBOT does not postprocess."""
        return action


# =============================================================================
# Exports
# =============================================================================
__all__ = [
    "BaseActionSpace",
    "build_action_space",
    "register_action",
    "EE6DActionSpace",
    "JointActionSpace",
    "AGIBOTEE6DActionSpace",
    "ACTION_REGISTRY",
]