--- tags: - biogpt - boolean-query - biomedical - systematic-review - pubmed license: unknown model-index: - name: BioGPT-BQF-TMK-Large results: - task: type: text-generation name: Text Generation dataset: name: CLEF TAR type: biomedical metrics: - name: Precision @100 type: precision value: 0.1455 - name: Recall @1000 type: recall value: 0.2661 --- # BioGPT-BQF-TMK-Large Fine-tuned BioGPT for Biomedical Boolean Query Formalization using Titles only. ## Model Details - Base Model: BioGPT - Fine-tuned on: Semi-synthetic generated data - Task: Boolean Query Generation for PubMed searches ## How to Use ```python from transformers import BioGptForCausalLM, BioGptTokenizer model = BioGptForCausalLM.from_pretrained("AI4BSLR/BioGPT-BQF-TMK-Large") tokenizer = BioGptTokenizer.from_pretrained("AI4BSLR/BioGPT-BQF-TMK-Large") input_text = "Title: Heterogeneity in Lung Cancer, MeSH: Biomarkers, Tumor, Genetic Heterogeneity, Keywords: Biomarkers, Query: " inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))