Update README.md
Browse files
README.md
CHANGED
|
@@ -36,54 +36,60 @@ LlavaGuard-v1.2-7B-OV is trained on [LlavaGuard-DS](https://huggingface.co/datas
|
|
| 36 |
|
| 37 |
## Model Compatability
|
| 38 |
|
| 39 |
-
- Inference: SGLang❌, LLaVA [repo](https://github.com/LLaVA-VL/LLaVA-NeXT)
|
| 40 |
- Model Tuning:❌
|
| 41 |
|
| 42 |
## Overview
|
| 43 |
We here provide the transformers converted weights for LlavaGuard v1.2 7B.
|
| 44 |
It builds upon LLaVA-OneVision 7B and has achieved the best overall performance so far with improved reasoning capabilities within the rationales.
|
| 45 |
-
This version is not compatible with the HF transformer implementation and must be used with SGLang or LLaVA implementation.
|
| 46 |
-
The model is also compatible with LoRA tuning as well as full fine-tuning.
|
| 47 |
-
For tuning, you can adopt and use the training scripts provided in our repository (see [ml-research/LlavaGuard](https://github.com/ml-research/LlavaGuard)).
|
| 48 |
-
A suitable docker image can be found at our Github repo, too.
|
| 49 |
|
| 50 |
-
#### Usage
|
| 51 |
-
|
| 52 |
-
# 0. Install requirements
|
| 53 |
-
For inference, you use the following [sglang docker](https://github.com/sgl-project/sglang/blob/main/docker/Dockerfile) and proceed with step 1.
|
| 54 |
-
Otherwise, you can also install sglang via pip or from source [see here](https://github.com/sgl-project/sglang).
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path AIML-TUDA/LlavaGuard-v1.2-7B-OV --port 10000
|
| 59 |
-
|
| 60 |
-
# 2. Model Inference
|
| 61 |
For model inference, you can access this server by running the code provided below, e.g.
|
| 62 |
`python my_script.py`
|
| 63 |
|
| 64 |
```Python
|
| 65 |
-
import
|
| 66 |
-
from
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
```
|
| 86 |
|
|
|
|
| 87 |
## Safety Taxonomy
|
| 88 |
|
| 89 |
Our default policy prompt looks like this:
|
|
|
|
| 36 |
|
| 37 |
## Model Compatability
|
| 38 |
|
| 39 |
+
- Inference: HF Tranformers✅, SGLang❌, LLaVA [repo](https://github.com/LLaVA-VL/LLaVA-NeXT)❌
|
| 40 |
- Model Tuning:❌
|
| 41 |
|
| 42 |
## Overview
|
| 43 |
We here provide the transformers converted weights for LlavaGuard v1.2 7B.
|
| 44 |
It builds upon LLaVA-OneVision 7B and has achieved the best overall performance so far with improved reasoning capabilities within the rationales.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
#### Usage
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
For model inference, you can access this server by running the code provided below, e.g.
|
| 50 |
`python my_script.py`
|
| 51 |
|
| 52 |
```Python
|
| 53 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 54 |
+
from PIL import Image
|
| 55 |
+
import requests
|
| 56 |
+
|
| 57 |
+
model = LlavaForConditionalGeneration.from_pretrained('AIML-TUDA/LlavaGuard-v1.2-7B-OV-hf')
|
| 58 |
+
processor = AutoProcessor.from_pretrained('AIML-TUDA/LlavaGuard-v1.2-7B-OV-hf')
|
| 59 |
+
|
| 60 |
+
conversation = [
|
| 61 |
+
{
|
| 62 |
+
"role": "user",
|
| 63 |
+
"content": [
|
| 64 |
+
{"type": "image"},
|
| 65 |
+
{"type": "text", "text": policy},
|
| 66 |
+
],
|
| 67 |
+
},
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 71 |
+
|
| 72 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 73 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 74 |
+
|
| 75 |
+
inputs = processor(text=text_prompt, images=image, return_tensors="pt")
|
| 76 |
+
model.to('cuda:0')
|
| 77 |
+
inputs = {k: v.to('cuda:0') for k, v in inputs.items()}
|
| 78 |
+
# Generate
|
| 79 |
+
hyperparameters = {
|
| 80 |
+
"max_new_tokens": 200,
|
| 81 |
+
"do_sample": True,
|
| 82 |
+
"temperature": 0.2,
|
| 83 |
+
"top_p": 0.95,
|
| 84 |
+
"top_k": 50,
|
| 85 |
+
"num_beams": 2,
|
| 86 |
+
"use_cache": True,
|
| 87 |
+
}
|
| 88 |
+
output = model.generate(**inputs, **hyperparameters)
|
| 89 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
| 90 |
```
|
| 91 |
|
| 92 |
+
|
| 93 |
## Safety Taxonomy
|
| 94 |
|
| 95 |
Our default policy prompt looks like this:
|