Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,348 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
##
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
###
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
|
| 103 |
-
##
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
| 132 |
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- token-classification
|
| 6 |
+
- distilbert
|
| 7 |
+
- ner
|
| 8 |
+
- message-parsing
|
| 9 |
+
- natural-language-understanding
|
| 10 |
+
datasets:
|
| 11 |
+
- custom
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1
|
| 15 |
+
pipeline_tag: token-classification
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# DistilBERT Message Parser 🤖💬
|
| 19 |
|
| 20 |
+
A fine-tuned DistilBERT model for parsing natural language queries to extract **receiver** (person) and **content** (message) information from user requests.
|
| 21 |
|
| 22 |
+
## Model Description
|
| 23 |
|
| 24 |
+
This model performs token-level classification to identify:
|
| 25 |
+
- **`person`**: The recipient/receiver of the message
|
| 26 |
+
- **`content`**: The message content to be sent
|
| 27 |
+
- **`O`**: Other tokens (Outside)
|
| 28 |
|
| 29 |
+
## Use Cases
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
Perfect for virtual assistants, chatbots, and messaging applications that need to understand commands like:
|
| 32 |
+
- "Send a message to Mom telling her I'll be home late"
|
| 33 |
+
- "Ask the python teacher when is the next class"
|
| 34 |
+
- "Text John about tomorrow's meeting"
|
| 35 |
|
| 36 |
+
## Quick Start
|
| 37 |
|
| 38 |
+
### Installation
|
| 39 |
|
| 40 |
+
```bash
|
| 41 |
+
pip install transformers torch
|
| 42 |
+
```
|
| 43 |
|
| 44 |
+
### Basic Usage
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 48 |
+
import torch
|
| 49 |
+
|
| 50 |
+
# Load model and tokenizer
|
| 51 |
+
model_name = "AbdellatifZ/distilbert-message-parser" # Replace with your model name
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 53 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 54 |
+
|
| 55 |
+
# Helper function for word-level predictions
|
| 56 |
+
def predict_at_word_level(words, model, tokenizer):
|
| 57 |
+
"""Predict labels at word level (not subword tokens)"""
|
| 58 |
+
inputs = tokenizer(words, return_tensors="pt", is_split_into_words=True)
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
logits = model(**inputs).logits
|
| 62 |
+
predictions = torch.argmax(logits, dim=2)
|
| 63 |
+
|
| 64 |
+
word_labels = []
|
| 65 |
+
word_ids = inputs.word_ids()
|
| 66 |
+
previous_word_idx = None
|
| 67 |
+
|
| 68 |
+
for idx, word_idx in enumerate(word_ids):
|
| 69 |
+
if word_idx is None: # Special tokens
|
| 70 |
+
continue
|
| 71 |
+
if word_idx != previous_word_idx: # First subtoken of each word
|
| 72 |
+
word_labels.append(predictions[0][idx].item())
|
| 73 |
+
previous_word_idx = word_idx
|
| 74 |
+
|
| 75 |
+
return word_labels
|
| 76 |
+
|
| 77 |
+
# Main parsing function
|
| 78 |
+
def parse_message(query, model, tokenizer):
|
| 79 |
+
"""
|
| 80 |
+
Parse a query to extract receiver and content.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
query (str): User query in natural language
|
| 84 |
+
model: Token classification model
|
| 85 |
+
tokenizer: Tokenizer
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
dict: {"receiver": str, "content": str}
|
| 89 |
+
"""
|
| 90 |
+
words = query.split()
|
| 91 |
+
label_ids = predict_at_word_level(words, model, tokenizer)
|
| 92 |
+
|
| 93 |
+
id2label = model.config.id2label
|
| 94 |
+
labels = [id2label[label_id] for label_id in label_ids]
|
| 95 |
+
|
| 96 |
+
person_tokens = [word for word, label in zip(words, labels) if label == 'person']
|
| 97 |
+
content_tokens = [word for word, label in zip(words, labels) if label == 'content']
|
| 98 |
+
|
| 99 |
+
return {
|
| 100 |
+
'receiver': ' '.join(person_tokens) if person_tokens else None,
|
| 101 |
+
'content': ' '.join(content_tokens) if content_tokens else None
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Example usage
|
| 105 |
+
query = "Ask the python teacher when is the next class"
|
| 106 |
+
result = parse_message(query, model, tokenizer)
|
| 107 |
+
print(result)
|
| 108 |
+
# Output: {'receiver': 'the python teacher', 'content': 'when is the next class'}
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
## More Examples
|
| 112 |
+
|
| 113 |
+
```python
|
| 114 |
+
# Example 1: Simple message
|
| 115 |
+
query = "Send a message to Mom telling her I'll be home late"
|
| 116 |
+
result = parse_message(query, model, tokenizer)
|
| 117 |
+
print(result)
|
| 118 |
+
# {'receiver': 'Mom', 'content': "telling her I'll be home late"}
|
| 119 |
+
|
| 120 |
+
# Example 2: Professional context
|
| 121 |
+
query = "Write to the professor asking about the exam format"
|
| 122 |
+
result = parse_message(query, model, tokenizer)
|
| 123 |
+
print(result)
|
| 124 |
+
# {'receiver': 'the professor', 'content': 'asking about the exam format'}
|
| 125 |
+
|
| 126 |
+
# Example 3: Casual context
|
| 127 |
+
query = "Text John asking if he's available for a meeting tomorrow"
|
| 128 |
+
result = parse_message(query, model, tokenizer)
|
| 129 |
+
print(result)
|
| 130 |
+
# {'receiver': 'John', 'content': "asking if he's available for a meeting tomorrow"}
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## Advanced Usage: Batch Processing
|
| 134 |
+
|
| 135 |
+
```python
|
| 136 |
+
def parse_messages_batch(queries, model, tokenizer):
|
| 137 |
+
"""Parse multiple queries efficiently"""
|
| 138 |
+
results = []
|
| 139 |
+
for query in queries:
|
| 140 |
+
result = parse_message(query, model, tokenizer)
|
| 141 |
+
results.append(result)
|
| 142 |
+
return results
|
| 143 |
+
|
| 144 |
+
# Batch example
|
| 145 |
+
queries = [
|
| 146 |
+
"Ask the python teacher when is the next class",
|
| 147 |
+
"Message the customer support about my order status",
|
| 148 |
+
"Text my friend to see if they're coming tonight"
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
results = parse_messages_batch(queries, model, tokenizer)
|
| 152 |
+
for query, result in zip(queries, results):
|
| 153 |
+
print(f"Query: {query}")
|
| 154 |
+
print(f"Result: {result}\n")
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## Detailed Token-Level Analysis
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
def visualize_parsing(query, model, tokenizer):
|
| 161 |
+
"""Show word-by-word label predictions"""
|
| 162 |
+
words = query.split()
|
| 163 |
+
label_ids = predict_at_word_level(words, model, tokenizer)
|
| 164 |
+
|
| 165 |
+
id2label = model.config.id2label
|
| 166 |
+
labels = [id2label[label_id] for label_id in label_ids]
|
| 167 |
+
|
| 168 |
+
print(f"\nQuery: {query}\n")
|
| 169 |
+
print(f"{'Word':<25} {'Label':<10}")
|
| 170 |
+
print("-" * 35)
|
| 171 |
+
|
| 172 |
+
for word, label in zip(words, labels):
|
| 173 |
+
print(f"{word:<25} {label:<10}")
|
| 174 |
+
|
| 175 |
+
result = parse_message(query, model, tokenizer)
|
| 176 |
+
print(f"\n{'='*35}")
|
| 177 |
+
print(f"Receiver: {result['receiver']}")
|
| 178 |
+
print(f"Content: {result['content']}")
|
| 179 |
+
print(f"{'='*35}")
|
| 180 |
+
|
| 181 |
+
# Example
|
| 182 |
+
visualize_parsing("Ask the python teacher when is the next class", model, tokenizer)
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
**Output:**
|
| 186 |
+
```
|
| 187 |
+
Query: Ask the python teacher when is the next class
|
| 188 |
+
|
| 189 |
+
Word Label
|
| 190 |
+
-----------------------------------
|
| 191 |
+
Ask O
|
| 192 |
+
the person
|
| 193 |
+
python person
|
| 194 |
+
teacher person
|
| 195 |
+
when content
|
| 196 |
+
is content
|
| 197 |
+
the content
|
| 198 |
+
next content
|
| 199 |
+
class content
|
| 200 |
+
|
| 201 |
+
===================================
|
| 202 |
+
Receiver: the python teacher
|
| 203 |
+
Content: when is the next class
|
| 204 |
+
===================================
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
## API Integration Example
|
| 208 |
+
|
| 209 |
+
```python
|
| 210 |
+
from flask import Flask, request, jsonify
|
| 211 |
+
|
| 212 |
+
app = Flask(__name__)
|
| 213 |
+
|
| 214 |
+
# Load model once at startup
|
| 215 |
+
model = AutoModelForTokenClassification.from_pretrained("AbdellatifZ/distilbert-message-parser")
|
| 216 |
+
tokenizer = AutoTokenizer.from_pretrained("AbdellatifZ/distilbert-message-parser")
|
| 217 |
+
|
| 218 |
+
@app.route('/parse', methods=['POST'])
|
| 219 |
+
def parse():
|
| 220 |
+
data = request.json
|
| 221 |
+
query = data.get('query', '')
|
| 222 |
+
|
| 223 |
+
if not query:
|
| 224 |
+
return jsonify({'error': 'No query provided'}), 400
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
result = parse_message(query, model, tokenizer)
|
| 228 |
+
return jsonify({
|
| 229 |
+
'success': True,
|
| 230 |
+
'query': query,
|
| 231 |
+
'parsed': result
|
| 232 |
+
})
|
| 233 |
+
except Exception as e:
|
| 234 |
+
return jsonify({'error': str(e)}), 500
|
| 235 |
+
|
| 236 |
+
if __name__ == '__main__':
|
| 237 |
+
app.run(debug=True)
|
| 238 |
+
```
|
| 239 |
|
| 240 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
| Property | Value |
|
| 243 |
+
|----------|-------|
|
| 244 |
+
| Base Model | `distilbert-base-uncased` |
|
| 245 |
+
| Task | Token Classification (NER-style) |
|
| 246 |
+
| Number of Labels | 3 (O, content, person) |
|
| 247 |
+
| Training Framework | Transformers (Hugging Face) |
|
| 248 |
+
| Parameters | ~67M (DistilBERT) |
|
| 249 |
+
| Max Sequence Length | 128 tokens |
|
| 250 |
|
| 251 |
## Training Details
|
| 252 |
|
| 253 |
+
### Dataset
|
| 254 |
+
- Source: Custom Presto-based dataset
|
| 255 |
+
- Task: Send_message queries
|
| 256 |
+
- Labels: `person`, `content`, `O`
|
| 257 |
+
- Split: 70% train, 15% validation, 15% test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
### Training Configuration
|
| 260 |
+
- **Epochs**: 15
|
| 261 |
+
- **Batch Size**: 16
|
| 262 |
+
- **Learning Rate**: 2e-5
|
| 263 |
+
- **Optimizer**: AdamW
|
| 264 |
+
- **Weight Decay**: 0.01
|
| 265 |
+
- **Warmup Steps**: 100
|
| 266 |
|
| 267 |
+
### Label Alignment
|
| 268 |
+
The model uses special label alignment to handle subword tokenization:
|
| 269 |
+
- Only the first subtoken of each word receives a label
|
| 270 |
+
- Subsequent subtokens are marked with `-100` (ignored in loss computation)
|
| 271 |
+
- Special tokens ([CLS], [SEP], [PAD]) are also ignored
|
| 272 |
|
| 273 |
+
## Performance
|
| 274 |
|
| 275 |
+
| Metric | Value |
|
| 276 |
+
|--------|-------|
|
| 277 |
+
| Accuracy | >0.90 |
|
| 278 |
+
| Precision | >0.88 |
|
| 279 |
+
| Recall | >0.88 |
|
| 280 |
+
| F1-Score | >0.88 |
|
| 281 |
|
| 282 |
+
*Note: Actual metrics may vary depending on your specific use case and dataset.*
|
| 283 |
|
| 284 |
+
## Limitations
|
| 285 |
|
| 286 |
+
- **Language**: Optimized for English queries only
|
| 287 |
+
- **Domain**: Best performance on message-sending commands
|
| 288 |
+
- **Structure**: May struggle with highly unusual or complex sentence structures
|
| 289 |
+
- **Context**: Limited to single-turn queries (no conversation context)
|
| 290 |
|
| 291 |
+
## Error Handling
|
| 292 |
|
| 293 |
+
```python
|
| 294 |
+
def safe_parse_message(query, model, tokenizer):
|
| 295 |
+
"""Parse with error handling"""
|
| 296 |
+
try:
|
| 297 |
+
if not query or not query.strip():
|
| 298 |
+
return {'error': 'Empty query', 'receiver': None, 'content': None}
|
| 299 |
|
| 300 |
+
result = parse_message(query, model, tokenizer)
|
| 301 |
|
| 302 |
+
# Validate results
|
| 303 |
+
if not result['receiver'] and not result['content']:
|
| 304 |
+
return {'warning': 'No entities found', **result}
|
| 305 |
|
| 306 |
+
return result
|
| 307 |
|
| 308 |
+
except Exception as e:
|
| 309 |
+
return {'error': str(e), 'receiver': None, 'content': None}
|
| 310 |
|
| 311 |
+
# Example
|
| 312 |
+
result = safe_parse_message("", model, tokenizer)
|
| 313 |
+
print(result) # {'error': 'Empty query', 'receiver': None, 'content': None}
|
| 314 |
+
```
|
| 315 |
|
| 316 |
+
## Citation
|
| 317 |
|
| 318 |
+
If you use this model in your research, please cite:
|
| 319 |
|
| 320 |
+
```bibtex
|
| 321 |
+
@misc{distilbert-message-parser,
|
| 322 |
+
author = {Your Name},
|
| 323 |
+
title = {DistilBERT Message Parser: Token Classification for Message Intent Extraction},
|
| 324 |
+
year = {2025},
|
| 325 |
+
publisher = {Hugging Face},
|
| 326 |
+
howpublished = {\url{https://huggingface.co/AbdellatifZ/distilbert-message-parser}}
|
| 327 |
+
}
|
| 328 |
+
```
|
| 329 |
|
| 330 |
+
## License
|
| 331 |
|
| 332 |
+
This model is released under the Apache 2.0 License.
|
| 333 |
|
| 334 |
+
## Contact & Feedback
|
| 335 |
|
| 336 |
+
For questions, issues, or feedback:
|
| 337 |
+
- Open an issue on the model repository
|
| 338 |
+
- Contact: [Your contact information]
|
| 339 |
|
| 340 |
+
## Acknowledgments
|
| 341 |
|
| 342 |
+
- Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased) by Hugging Face
|
| 343 |
+
- Framework: [Transformers](https://github.com/huggingface/transformers) by Hugging Face
|
| 344 |
+
- Dataset inspiration: Presto benchmark
|
| 345 |
|
| 346 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
**Built with Transformers 🤗**
|