--- language: en license: mit tags: - text2text-generation - multitask - genre-classification - rating-prediction - title-generation - t5 metrics: - accuracy - rmse - bleu base_model: google/t5-small pipeline_tag: text2text-generation library_name: transformers --- # T5 Multitask Model for Book Genre, Rating, and Title Tasks This model was trained on a custom dataset of book descriptions and titles. It supports: - `genre:` → classify the genre of a book - `rating:` → predict the numeric rating - `title:` → generate a book title --- ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("AbrarFahim75/t5-multitask-book") tokenizer = T5Tokenizer.from_pretrained("AbrarFahim75/t5-multitask-book") input_text = "genre: A dark and stormy night in an abandoned castle." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## Model Details - **Base model**: [google/t5-small](https://huggingface.co/google/t5-small) - **Language**: English - **Model type**: T5 fine-tuned on multi-task dataset (genre, rating, title) - **License**: MIT - **Author**: [AbrarFahim75](https://huggingface.co/AbrarFahim75) - **Repository**: [t5-multitask-book](https://huggingface.co/AbrarFahim75/t5-multitask-book) --- ## Training Details - **Data source**: Custom CSV with columns: `title`, `description`, `genre`, `rating` - **Preprocessing**: Merged title and description → formatted prompts like: - `"genre: "` - `"rating: "` - `"title: "` - **Epochs**: 3 - **Optimizer**: AdamW - **Batch size**: 8 - **Loss**: Cross-entropy --- ## Evaluation | Task | Metric | Value (sample, dev split) | |-------------------|----------|----------------------------| | Genre Classification | Accuracy | ~0.78 (sample set) | | Rating Prediction | RMSE | ~0.42 | | Title Generation | BLEU | ~15.3 | > ⚠️ These are informal evaluations using validation slices from the dataset. --- ## Intended Use ### Direct Use: - Classifying book genres from text - Predicting numeric ratings from descriptions - Auto-generating book titles ### Out-of-Scope Use: - Non-book-related input - Use in high-stakes recommendation without human review --- ## Limitations and Biases - Trained on a limited dataset of books (genre/bias unknown) - May underperform on texts outside typical fiction/non-fiction boundaries - Language is English only --- ## Citation If you use this model, please cite: ```bibtex @misc{fahim2025t5bookmultitask, title={T5 Multitask for Book Tasks}, author={Md Abrar Fahim}, year={2025}, url={https://huggingface.co/AbrarFahim75/t5-multitask-book} } ``` --- ## Contact For questions, please reach out at [huggingface.co/AbrarFahim75](https://huggingface.co/AbrarFahim75)