Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
---
|
| 6 |
+
# Toxicity_model
|
| 7 |
+
|
| 8 |
+
The Toxicity_model is used to differentiates polite from unpolite responses.
|
| 9 |
+
|
| 10 |
+
The model was trained with a dataset composed of toxic_response and non_toxic_response.
|
| 11 |
+
|
| 12 |
+
## Details
|
| 13 |
+
- Size: 4,689,681 parameters
|
| 14 |
+
- Dataset: [Toxic Comment Classification Challenge Dataset](https://github.com/tianqwang/Toxic-Comment-Classification-Challenge)
|
| 15 |
+
- Language: English
|
| 16 |
+
- Number of Training Steps: 20
|
| 17 |
+
- Batch size: 16
|
| 18 |
+
- Optimizer: Adam
|
| 19 |
+
- Learning Rate: 0.001
|
| 20 |
+
- GPU: T4
|
| 21 |
+
- This repository has the source [code used](https://github.com/Nkluge-correa/teeny-tiny_castle/blob/master/ML%20Intro%20Course/15_toxicity_detection.ipynb) to train this model.
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
⚠️ THE EXAMPLES BELOW CONTAIN TOXIC/OFFENSIVE LANGUAGE ⚠️
|
| 26 |
+
|
| 27 |
+
```
|
| 28 |
+
import tensorflow as tf
|
| 29 |
+
|
| 30 |
+
toxicity_model = tf.keras.models.load_model('toxicity_model.keras')
|
| 31 |
+
|
| 32 |
+
with open('toxic_vocabulary.txt', encoding='utf-8') as fp:
|
| 33 |
+
vocabulary = [line.strip() for line in fp]
|
| 34 |
+
fp.close()
|
| 35 |
+
|
| 36 |
+
vectorization_layer = tf.keras.layers.TextVectorization(max_tokens=20000,
|
| 37 |
+
output_mode="int",
|
| 38 |
+
output_sequence_length=100,
|
| 39 |
+
vocabulary=vocabulary)
|
| 40 |
+
|
| 41 |
+
strings = [
|
| 42 |
+
'I think you should shut up your big mouth',
|
| 43 |
+
'I do not agree with you'
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
preds = toxicity_model.predict(vectorization_layer(strings),verbose=0)
|
| 47 |
+
|
| 48 |
+
for i, string in enumerate(strings):
|
| 49 |
+
print(f'{string}\n')
|
| 50 |
+
print(f'Toxic 🤬 {round((1 - preds[i][0]) * 100, 2)}% | Not toxic 😊 {round(preds[i][0] * 100, 2)}\n')
|
| 51 |
+
print("_" * 50)
|
| 52 |
+
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
This will output the following:
|
| 56 |
+
```
|
| 57 |
+
I think you should shut up your big mouth
|
| 58 |
+
|
| 59 |
+
Toxic 🤬 95.73% | Not toxic 😊 4.27
|
| 60 |
+
__________________________________________________
|
| 61 |
+
I do not agree with you
|
| 62 |
+
|
| 63 |
+
Toxic 🤬 0.99% | Not toxic 😊 99.01
|
| 64 |
+
__________________________________________________
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
# Cite as 🤗
|
| 68 |
+
```
|
| 69 |
+
@misc{teenytinycastle,
|
| 70 |
+
doi = {10.5281/zenodo.7112065},
|
| 71 |
+
url = {https://huggingface.co/AiresPucrs/toxicity_model},
|
| 72 |
+
author = {Nicholas Kluge Corr{\^e}a},
|
| 73 |
+
title = {Teeny-Tiny Castle},
|
| 74 |
+
year = {2023},
|
| 75 |
+
publisher = {HuggingFace},
|
| 76 |
+
journal = {HuggingFace repository},
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
## License
|
| 80 |
+
The ToxicityModel is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.
|