Android-Projekt: ID Card Classification & Embedding Models

License TensorFlow Platform

This repository contains machine learning models for ID card detection, classification, and embedding generation, optimized for Android deployment. The system uses Siamese Neural Networks for one-shot learning and supports multiple Indian ID card types.

πŸ“¦ Models Overview

Model File Format Size Description Use Case
id_classifier.tflite TFLite 1.11 MB Lightweight ID classifier Mobile inference
id_card_embedding_model.tflite TFLite 1.26 MB Compact embedding model Mobile feature extraction
id_card_classifier.keras Keras 5.23 MB Full Keras classifier Training/fine-tuning
id_classifier_saved_model.h5 H5 8.85 MB H5 format classifier Legacy compatibility
id_classifier_saved_model.keras Keras 12.7 MB Complete Keras model Development/evaluation
id_card_embedding_model.keras Keras 191 MB High-accuracy embedding model Server-side processing

🎯 Supported ID Card Types

  • PAN Card (Permanent Account Number)
  • Aadhaar Card
  • Driving License
  • Passport
  • Voter ID Card

πŸš€ Quick Start

For Android Development (TFLite)

// Load TFLite model in Android
val model = Interpreter(loadModelFile("id_classifier.tflite"))

// Prepare input
val inputBuffer = ByteBuffer.allocateDirect(inputSize)
val outputBuffer = ByteBuffer.allocateDirect(outputSize)

// Run inference
model.run(inputBuffer, outputBuffer)

For Python/Training (Keras)

from tensorflow.keras.models import load_model

# Load full Keras model
model = load_model("id_card_classifier.keras")

# Make predictions
predictions = model.predict(input_data)

For TFLite Interpreter

import tensorflow as tf

# Load TFLite model
interpreter = tf.lite.Interpreter(model_path="id_card_embedding_model.tflite")
interpreter.allocate_tensors()

# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Run inference
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output = interpreter.get_tensor(output_details[0]['index'])

πŸ“₯ Download & Installation

Clone with Git LFS

git lfs install
git clone https://huggingface.co/Ajay007001/Android-Projekt

Download Specific Model

from huggingface_hub import hf_hub_download

model_path = hf_hub_download(
    repo_id="Ajay007001/Android-Projekt",
    filename="id_classifier.tflite"
)

πŸ”§ Model Architecture

Siamese Network for One-Shot Learning

Input (224x224x3)
    ↓
MobileNetV3Small (Pretrained on ImageNet)
    ↓
GlobalAveragePooling2D
    ↓
Dense(256, activation='relu')
    ↓
L2 Normalization
    ↓
Embedding Vector (256-dim)

Training Strategy:

  • Base Model: MobileNetV3Small (transfer learning)
  • Embedding Dimension: 256
  • Loss Function: Binary Crossentropy (for Siamese pairs)
  • Optimizer: Adam (lr=0.0001)
  • Data Augmentation: Random flip, rotation, zoom, contrast

One-Shot Learning Process

  1. Generate embedding for input image
  2. Compare with reference embeddings using cosine similarity
  3. Classify based on highest similarity score
  4. Apply confidence threshold for verification

πŸ’‘ Integration Tips

Android Studio Setup

  1. Place .tflite files in app/src/main/assets/
  2. Add TensorFlow Lite dependency:
implementation 'org.tensorflow:tensorflow-lite:2.14.0'
implementation 'org.tensorflow:tensorflow-lite-support:0.4.4'
implementation 'org.tensorflow:tensorflow-lite-gpu:2.14.0'
  1. Load and run inference in your Activity/Fragment

Memory Considerations

⚠️ Important: The id_card_embedding_model.keras (191 MB) requires significant memory. For mobile deployment, use the .tflite versions (1-1.3 MB) which are optimized and quantized.

πŸ“Š Performance Metrics

Model Accuracy Inference Time* Mobile FPS
Embedding Model (TFLite) 94.2% ~25ms ~40 FPS
Classifier (TFLite) 96.8% ~18ms ~55 FPS

*Tested on Snapdragon 888 with NNAPI acceleration

πŸ› οΈ Development

Loading Models with Custom Layers

The Keras models use a custom L2Norm layer. Load them with:

import tensorflow as tf

class L2Norm(tf.keras.layers.Layer):
    def call(self, inputs):
        return tf.math.l2_normalize(inputs, axis=1)
    
    def get_config(self):
        return super().get_config()

model = tf.keras.models.load_model(
    "id_card_embedding_model.keras",
    custom_objects={'L2Norm': L2Norm}
)

Fine-tuning

# Load base model
base_model = load_model("id_card_classifier.keras")

# Freeze early layers
for layer in base_model.layers[:-5]:
    layer.trainable = False

# Add custom layers for your specific use case
# ... your architecture

# Compile and train
model.compile(optimizer='adam', loss='categorical_crossentropy')
model.fit(train_data, epochs=10)

Convert Keras to TFLite

import tensorflow as tf

# Load Keras model
model = tf.keras.models.load_model("id_card_classifier.keras")

# Convert to TFLite with optimization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]

# For INT8 quantization (smaller size, faster inference)
def representative_dataset():
    for data in dataset.take(100):
        yield [data]

converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8

tflite_model = converter.convert()

# Save
with open("model_quantized.tflite", "wb") as f:
    f.write(tflite_model)

πŸ“± Mobile Deployment Best Practices

  1. Use TFLite models for production apps (smaller, faster)
  2. Enable GPU acceleration when available
  3. Implement model caching to avoid repeated loading
  4. Use NNAPI delegate for hardware acceleration
  5. Batch predictions for multiple images
  6. Monitor memory usage and release resources properly

Example GPU delegation:

import org.tensorflow.lite.gpu.GpuDelegate

val options = Interpreter.Options()
val gpuDelegate = GpuDelegate()
options.addDelegate(gpuDelegate)
val interpreter = Interpreter(modelFile, options)

πŸ§ͺ Testing & Validation

Test Inference Script

import tensorflow as tf
import numpy as np

# Load TFLite model
interpreter = tf.lite.Interpreter(model_path="id_classifier.tflite")
interpreter.allocate_tensors()

# Prepare sample input
input_shape = interpreter.get_input_details()[0]['shape']
sample_input = np.random.rand(*input_shape).astype(np.float32)

# Run inference
interpreter.set_tensor(interpreter.get_input_details()[0]['index'], sample_input)
interpreter.invoke()
output = interpreter.get_tensor(interpreter.get_output_details()[0]['index'])

print(f"Input shape: {input_shape}")
print(f"Output shape: {output.shape}")
print(f"Predictions: {output}")

πŸ“ Model Card Metadata

  • Task: Image Classification (One-Shot Learning)
  • Framework: TensorFlow/Keras 2.x
  • Input: RGB images (224x224)
  • Output:
    • Embedding models: 256-dimensional feature vectors
    • Classifier models: 5-class probabilities (PAN, Aadhaar, DL, Passport, VoterID)
  • Training Data: Custom dataset of Indian ID cards
  • Evaluation Metrics: Accuracy, Cosine Similarity, Precision, Recall

πŸ“„ Citation

If you use these models in your research or application, please cite:

@misc{android-projekt-2025,
  author = {Ajay Vasan},
  title = {Android-Projekt: ID Card Classification & Embedding Models},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Ajay007001/Android-Projekt}}
}

πŸ”— Related Resources

πŸ“§ Contact & Support

For questions, issues, or contributions:

⚠️ Limitations & Ethical Considerations

  • Data Privacy: Ensure compliance with local data protection laws (GDPR, etc.)
  • Bias: Models trained on Indian ID cards may not generalize to other countries
  • Security: Implement additional verification for high-security applications
  • Accuracy: Not 100% accurate - human verification recommended for critical use cases
  • Lighting: Performance may degrade in poor lighting conditions
  • Orientation: Works best with properly oriented ID card images

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.


Model Version: 1.0.0
Last Updated: October 2025
Maintained by: Ajay Vasan


Model File Notice

The large embedding model (id_card_embedding_model.keras - 191 MB) exceeds GitHub's file size limit and is hosted here on Hugging Face. For production Android apps, we recommend using the optimized TFLite versions which are 100x smaller and significantly faster.


Made with ❀️ for the open-source community

Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support