|
|
--- |
|
|
license: mit |
|
|
language: |
|
|
- en |
|
|
- fr |
|
|
- es |
|
|
base_model: |
|
|
- unsloth/medgemma-12b-it-bnb-4bit |
|
|
tags: |
|
|
- medical |
|
|
--- |
|
|
|
|
|
## MOSAIC 12B |
|
|
|
|
|
<img src="https://raw.githubusercontent.com/aliswh/mosaic/refs/heads/main/mosaic-icon.png" alt="Mosaic logo" width="200"/> |
|
|
MOSAIC is a framework for efficient radiological report classification that is: |
|
|
|
|
|
- π Multilingual: Works across different languages |
|
|
- π― Taxonomy-Agnostic: Adapts to various classification schemes |
|
|
- β‘ Computationally Efficient: Optimized for resource usage |
|
|
|
|
|
## Training code |
|
|
|
|
|
Code available on [GitHub](https://github.com/aliswh/mosaic). |
|
|
|
|
|
## References |
|
|
|
|
|
[Model Paper](https://arxiv.org/abs/2509.04471) |
|
|
|
|
|
A 4B model version is available at [AliceSch/mosaic-4b](https://huggingface.co/AliceSch/mosaic-4b). |
|
|
|
|
|
Please cite this model as: |
|
|
``` |
|
|
@article{schiavone2025mosaic, |
|
|
title={MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification}, |
|
|
author={Schiavone, Alice and Fraccaro, Marco and Pehrson, Lea Marie and Ingala, Silvia and Bonnevie, Rasmus and Nielsen, Michael Bachmann and Beliveau, Vincent and Ganz, Melanie and Elliott, Desmond}, |
|
|
journal={arXiv preprint arXiv:2509.04471}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|