--- license: mit datasets: - manueltonneau/arabic-hate-speech-superset language: - ar metrics: - f1 - accuracy base_model: - aubmindlab/bert-base-arabertv02 pipeline_tag: text-classification library_name: transformers --- model loading: ```py import torch from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, ) model_name = "AyaHazem61/araBERT-For-Hate-Speech-Detection" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=2 ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) ``` model predicting: ```py texts = ["السلام عليكم و رحمة الله و بركاته"] inputs = tokenizer(texts , return_tensors="pt", padding="max_length", truncation=True, max_length=512) model .eval() with torch.no_grad(): outputs = model (**inputs) logits = outputs.logits ```