---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
datasets:
- FinGPT/fingpt-sentiment-train
---
See config
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizergin
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: data.jsonl
ds_type: json
type:
field_instruction: instruction
field_input: input
field_output: output
format: |-
[INST]{input}
{instruction} [/INST]
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 1
micro_batch_size: 32
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001
bf16: auto
fp16: false
tf32: false
train_on_inputs: false
group_by_length: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
save_steps:
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: "
# Finistral-7B Financial Sentiment Analyst
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [FinGPT Sentiment](https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train) dataset. It is intended to be used for sentiment analysis tasks for financial data.
## Python Example
```python
# Downloading necessary dependencies
!pip install -qU transformers peft datasets scikit-learn seaborn matplotlib pandas tqdm bitsandbytes gradio
from huggingface_hub import login
login(token="Your_HuggingFace_Access_Token")
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Defining model identifiers
base_model = "mistralai/Mistral-7B-v0.1"
peft_model = "Ayansk11/Finistral-7B_lora"
# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
# Loading base model with 8-bit precision
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map="auto",
load_in_8bit=True,
trust_remote_code=True,
use_auth_token=True
)
# Loading LoRA adapter
model = PeftModel.from_pretrained(model, peft_model)
model.eval()
def predict_sentiment(text):
# Formatting the input text into a prompt
prompt = f"""Instruction: What is the sentiment of this news? Please choose an answer from {{negative/neutral/positive}}
Input: {text}
Answer: """
# Tokenizing the prompt
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generating Answer
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extracting the answer
answer = decoded_output.split("Answer:")[-1].strip().split()[0].lower()
# Determining the sentiment
if "neg" in answer:
return "Negative"
elif "neu" in answer:
return "Neutral"
elif "pos" in answer:
return "Positive"
else:
return "Neutral"
import gradio as gr
custom_css = """
body, .gradio-container {
background-color: #0d1117 !important;
color: #e1e1e1 !important;
}
.gradio-container .input_txt,
.gradio-container .output_txt {
background-color: #1e272e !important;
border-radius: 0.5rem !important;
padding: 1rem !important;
}
.gradio-container button {
border-radius: 0.5rem !important;
padding: 0.75rem 1.5rem !important;
font-weight: 600 !important;
}
.gradio-container button:hover {
background-color: #00b894 !important;
}
.gradio-container button:focus {
outline: 2px solid #0984e3 !important;
}
"""
with gr.Blocks(
title="Finistral AI: The Market Sentiment Analyst",
theme=gr.themes.Base(),
css=custom_css
) as demo:
gr.Markdown(
"""
" "Powered by Finistral AI • Built with Gradio" "
" ) demo.launch(share=True) # Output: # positive # neutral # negative ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 0.0001 * train_batch_size: 32 * eval_batch_size: 32 * seed: 42 * distributed_type: multi-GPU * num_devices: 2 * total_train_batch_size: 64 * total_eval_batch_size: 64 * optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08 * lr_scheduler_type: cosine * lr_scheduler_warmup_steps: 10 * num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0680 | 1.0 | 1140 | 0.1121 | | 0.1337 | 2.0 | 2280 | 0.1009 | | 0.0499 | 3.0 | 3420 | 0.1147 | | 0.0014 | 4.0 | 4560 | 0.1599 | ### Frameworks * PEFT * Transformers * Pytorch * Datasets * Tokenizers