AbirMessaoudi commited on
Commit
dc55ba4
·
verified ·
1 Parent(s): e6d8b71

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -14
README.md CHANGED
@@ -73,7 +73,7 @@ To transcribe audio in Catalan using this model, you can follow this example:
73
  ```python
74
  from faster_whisper import WhisperModel
75
 
76
- model_size = "https://huggingface.co/langtech-veu/whisper-large-v3-ca-punctuated-3370h"
77
 
78
  # Run on GPU with FP16
79
  model = WhisperModel(model_size, device="cuda", compute_type="float16")
@@ -98,7 +98,7 @@ for segment in segments:
98
  This model is not a direct result of training. It is a conversion of a [Whisper](https://huggingface.co/openai/whisper-large-v3) model using [faster-whisper](https://github.com/guillaumekln/faster-whisper/tree/master). The procedure to create the model is as follows:
99
 
100
  ```bash
101
- ct2-transformers-converter --model https://huggingface.co/langtech-veu/whisper-large-v3-ca-punctuated-3370h
102
  --output_dir faster-whisper-large-v3-ca-punctuated-3370h
103
  --copy_files preprocessor_config.json
104
  --quantization float16
@@ -106,25 +106,15 @@ ct2-transformers-converter --model https://huggingface.co/langtech-veu/whisper-l
106
 
107
  ## Citation
108
  If this model contributes to your research, please cite the work:
109
- ```bibtex
110
- @inproceedings{hernandez20243catparla,
111
- title={3CatParla: A New Open-Source Corpus of Broadcast TV in Catalan for Automatic Speech Recognition},
112
- author={Hern{\'a}ndez Mena, Carlos Daniel and Armentano Oller, Carme and Solito, Sarah and K{\"u}lebi, Baybars},
113
- booktitle={Proc. IberSPEECH 2024},
114
- pages={176--180},
115
- year={2024}
116
- }
117
  ```
118
-
119
- <!--
120
  @misc{mena2025whisperpunctuated,
121
  title={Acoustic Model in Catalan: whisper-large-v3-ca-punctuated-3370h.},
122
- author={Hernandez Mena, Carlos Daniel, Messaoudi Abir, Bonet, Cristina},
123
  organization={Barcelona Supercomputing Center},
124
  url={https://huggingface.co/langtech-veu/faster-whisper-large-v3-ca-punctuated-3370h},
125
  year={2025}
126
  }
127
- -->
128
 
129
  ## Additional Information
130
 
 
73
  ```python
74
  from faster_whisper import WhisperModel
75
 
76
+ model_size = "langtech-veu/whisper-large-v3-ca-punctuated-3370h"
77
 
78
  # Run on GPU with FP16
79
  model = WhisperModel(model_size, device="cuda", compute_type="float16")
 
98
  This model is not a direct result of training. It is a conversion of a [Whisper](https://huggingface.co/openai/whisper-large-v3) model using [faster-whisper](https://github.com/guillaumekln/faster-whisper/tree/master). The procedure to create the model is as follows:
99
 
100
  ```bash
101
+ ct2-transformers-converter --model langtech-veu/whisper-large-v3-ca-punctuated-3370h
102
  --output_dir faster-whisper-large-v3-ca-punctuated-3370h
103
  --copy_files preprocessor_config.json
104
  --quantization float16
 
106
 
107
  ## Citation
108
  If this model contributes to your research, please cite the work:
 
 
 
 
 
 
 
 
109
  ```
 
 
110
  @misc{mena2025whisperpunctuated,
111
  title={Acoustic Model in Catalan: whisper-large-v3-ca-punctuated-3370h.},
112
+ author={Hernandez Mena, Carlos Daniel, Messaoudi, Abir, España-Bonet, Cristina},
113
  organization={Barcelona Supercomputing Center},
114
  url={https://huggingface.co/langtech-veu/faster-whisper-large-v3-ca-punctuated-3370h},
115
  year={2025}
116
  }
117
+ ```
118
 
119
  ## Additional Information
120