File size: 5,962 Bytes
65834d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Optional, Tuple

import torch
from torch import nn
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs

from transformers.models.gemma2.modeling_gemma2 import (
    repeat_kv,
    apply_rotary_pos_emb,
    eager_attention_forward
)


class MLAAttention(nn.Module):
    """
    Modified from `transformers.models.llama.modeling_deepseek_v3.DeepseekV3Attention`
    add support for attention bias and softcapping
    """
    def __init__(self, config, layer_idx: int):

        super().__init__()
        self.config = config
        self.layer_idx = layer_idx

        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.attention_dropout = config.attention_dropout
        self.num_heads = config.num_attention_heads
        self.rope_theta = config.rope_theta
        self.q_lora_rank = config.q_lora_rank
        self.kv_lora_rank = config.kv_lora_rank
        self.qk_rope_head_dim = config.qk_rope_head_dim
        self.qk_nope_head_dim = config.qk_nope_head_dim
        self.v_head_dim = config.v_head_dim
        self.qk_head_dim = config.qk_head_dim
        self.softcap = config.softcap
        
        self.is_causal = True
        if self.q_lora_rank is None:
            self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=config.attention_bias)
        else:
            self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=False)
            self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=config.attention_bias)

        self.kv_a_proj_with_mqa = nn.Linear(
            config.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=config.attention_bias,
        )
        self.kv_b_proj = nn.Linear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=config.attention_bias,
        )

        self.o_proj = nn.Linear(
            self.num_heads * self.v_head_dim,
            config.hidden_size,
            bias=False,
        )

        self.scaling = self.config.query_pre_attn_scalar ** (-0.5)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        batch_size, seq_length = hidden_states.shape[:-1]
        query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
        key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
        if self.q_lora_rank is None:
            q_states = self.q_proj(hidden_states)
        else:
            q_states = self.q_b_proj(self.q_a_proj(hidden_states))
        q_states = q_states.view(query_shape).transpose(1, 2)
        q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
        k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)

        k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
        k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)

        k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)

        cos, sin = position_embeddings
        q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin)
        k_rot = k_rot.expand(*k_pass.shape[:-1], -1)

        query_states = torch.cat((q_pass, q_rot), dim=-1)
        key_states = torch.cat((k_pass, k_rot), dim=-1)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
            value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])

        attention_interface = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            softcap=self.softcap,
            **kwargs,
        )
        if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
            attn_output = attn_output[:, :, :, : self.v_head_dim]
        attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights