--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - named-entity-recognition - lumasaba - african-language - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Multilingual_PII_NER_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: multilingual-microsoft/deberta-v3-base-lumasaba-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Multilingual_PII_NER_dataset type: Beijuka/Multilingual_PII_NER_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.9801980198019802 - name: Recall type: recall value: 0.945859872611465 - name: F1 type: f1 value: 0.9627228525121556 - name: Accuracy type: accuracy value: 0.9528795811518325 --- # multilingual-microsoft/deberta-v3-base-lumasaba-ner-v1 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3746 - Precision: 0.9802 - Recall: 0.9459 - F1: 0.9627 - Accuracy: 0.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 398 | 0.7058 | 0.7983 | 0.7704 | 0.7841 | 0.7637 | | 1.0932 | 2.0 | 796 | 0.4247 | 0.8727 | 0.8933 | 0.8829 | 0.8807 | | 0.3981 | 3.0 | 1194 | 0.4242 | 0.8830 | 0.9218 | 0.9020 | 0.9055 | | 0.2187 | 4.0 | 1592 | 0.4187 | 0.9194 | 0.9194 | 0.9194 | 0.9190 | | 0.2187 | 5.0 | 1990 | 0.3810 | 0.9433 | 0.9487 | 0.9460 | 0.9383 | | 0.108 | 6.0 | 2388 | 0.4557 | 0.9701 | 0.9251 | 0.9471 | 0.9338 | | 0.0769 | 7.0 | 2786 | 0.4815 | 0.9330 | 0.9406 | 0.9367 | 0.9293 | | 0.0401 | 8.0 | 3184 | 0.4978 | 0.9602 | 0.9430 | 0.9515 | 0.9401 | | 0.0384 | 9.0 | 3582 | 0.5352 | 0.9437 | 0.9422 | 0.9430 | 0.9356 | | 0.0384 | 10.0 | 3980 | 0.5006 | 0.9436 | 0.9536 | 0.9486 | 0.9374 | | 0.0181 | 11.0 | 4378 | 0.5544 | 0.9481 | 0.9528 | 0.9504 | 0.9388 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4