--- tags: - matformer - custom-model library_name: transformers --- # Matformer Model Trained using [Matformer](https://github.com/mrinaldi97/matformer). ## Installation ```bash pip install git+https://github.com/mrinaldi97/matformer.git ``` ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "CCC-Unito/kenji-endo-0.1", trust_remote_code=True ) tokenizer=AutoTokenizer.from_pretrained(model.config._tokenizer_name) text = "The transformer model is a" inputs = tokenizer(text,return_tensors='pt')['input_ids'].to(model.device) with torch.no_grad(): outputs = model.generate(inputs, max_new_tokens=50) generated = model.matformer_model.tokenizer.decode(outputs[0].tolist()) print(generated) ```