File size: 4,443 Bytes
d6471bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee54af
 
 
d6471bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee54af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6471bf
 
 
 
2c13df6
3ee54af
 
2c13df6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cwe-parent-vulnerability-classification-roberta-base-roberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cwe-parent-vulnerability-classification-roberta-base-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3755
- Accuracy: 0.6603
- F1 Macro: 0.4616

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 2.9549        | 1.0   | 238  | 2.9056          | 0.0948   | 0.0729   |
| 2.2865        | 2.0   | 476  | 1.9760          | 0.4946   | 0.3041   |
| 1.8517        | 3.0   | 714  | 1.7010          | 0.5114   | 0.3522   |
| 1.6439        | 4.0   | 952  | 1.5457          | 0.6074   | 0.3826   |
| 1.3475        | 5.0   | 1190 | 1.5154          | 0.5894   | 0.3608   |
| 1.1372        | 6.0   | 1428 | 1.4379          | 0.6327   | 0.4183   |
| 1.0323        | 7.0   | 1666 | 1.3955          | 0.6411   | 0.4184   |
| 0.8662        | 8.0   | 1904 | 1.3755          | 0.6603   | 0.4616   |
| 0.8135        | 9.0   | 2142 | 1.4626          | 0.6807   | 0.4703   |
| 0.632         | 10.0  | 2380 | 1.4197          | 0.6999   | 0.4439   |
| 0.5727        | 11.0  | 2618 | 1.4083          | 0.6795   | 0.4878   |
| 0.5429        | 12.0  | 2856 | 1.5234          | 0.6651   | 0.4823   |
| 0.3597        | 13.0  | 3094 | 1.5866          | 0.7107   | 0.4995   |
| 0.3076        | 14.0  | 3332 | 1.6262          | 0.7191   | 0.5243   |
| 0.2458        | 15.0  | 3570 | 1.7271          | 0.6963   | 0.5259   |
| 0.2052        | 16.0  | 3808 | 1.7799          | 0.7011   | 0.4556   |
| 0.1801        | 17.0  | 4046 | 1.7717          | 0.7179   | 0.4983   |
| 0.187         | 18.0  | 4284 | 2.0014          | 0.7239   | 0.5273   |
| 0.1473        | 19.0  | 4522 | 1.9999          | 0.7419   | 0.5388   |
| 0.1198        | 20.0  | 4760 | 1.9328          | 0.7275   | 0.5336   |
| 0.152         | 21.0  | 4998 | 2.0637          | 0.7407   | 0.4759   |
| 0.0692        | 22.0  | 5236 | 2.2153          | 0.7647   | 0.5553   |
| 0.0632        | 23.0  | 5474 | 2.1253          | 0.7431   | 0.5381   |
| 0.069         | 24.0  | 5712 | 2.2856          | 0.7587   | 0.5443   |
| 0.0472        | 25.0  | 5950 | 2.3607          | 0.7611   | 0.5286   |
| 0.0452        | 26.0  | 6188 | 2.4693          | 0.7539   | 0.5191   |
| 0.0388        | 27.0  | 6426 | 2.4699          | 0.7587   | 0.5550   |
| 0.0412        | 28.0  | 6664 | 2.5062          | 0.7659   | 0.5332   |
| 0.0419        | 29.0  | 6902 | 2.4443          | 0.7551   | 0.5488   |
| 0.0238        | 30.0  | 7140 | 2.5642          | 0.7479   | 0.5487   |
| 0.0616        | 31.0  | 7378 | 2.5451          | 0.7623   | 0.5511   |
| 0.0163        | 32.0  | 7616 | 2.6758          | 0.7599   | 0.5450   |
| 0.028         | 33.0  | 7854 | 2.6806          | 0.7671   | 0.5432   |
| 0.0147        | 34.0  | 8092 | 2.6815          | 0.7647   | 0.5518   |
| 0.0251        | 35.0  | 8330 | 2.7046          | 0.7611   | 0.5470   |
| 0.0151        | 36.0  | 8568 | 2.6610          | 0.7527   | 0.5440   |
| 0.0128        | 37.0  | 8806 | 2.7269          | 0.7551   | 0.5426   |
| 0.0421        | 38.0  | 9044 | 2.7759          | 0.7515   | 0.5437   |
| 0.0259        | 39.0  | 9282 | 2.7239          | 0.7587   | 0.5444   |
| 0.0046        | 40.0  | 9520 | 2.7196          | 0.7599   | 0.5448   |


### Framework versions

- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1