File size: 7,090 Bytes
e681738
13d26a3
e681738
13d26a3
 
e681738
 
79dbd50
e681738
79dbd50
e681738
 
 
 
 
79dbd50
 
e681738
 
 
 
 
 
79dbd50
 
 
e681738
79dbd50
 
e681738
 
79dbd50
e681738
79dbd50
e681738
79dbd50
 
 
e681738
79dbd50
 
e681738
79dbd50
 
 
 
e681738
79dbd50
 
 
 
 
 
 
 
 
e681738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79dbd50
 
 
e681738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79dbd50
e681738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79dbd50
 
e681738
79dbd50
 
 
 
 
 
 
 
 
 
e681738
79dbd50
e681738
 
79dbd50
 
 
 
 
 
 
 
 
 
 
e681738
79dbd50
e681738
 
79dbd50
e681738
 
79dbd50
e681738
79dbd50
e681738
79dbd50
e681738
79dbd50
 
 
 
 
e681738
79dbd50
e681738
79dbd50
e681738
79dbd50
 
 
 
 
 
 
 
 
e681738
79dbd50
e681738
79dbd50
e681738
79dbd50
e681738
 
79dbd50
e681738
79dbd50
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
library_name: transformers
base_model: meta-llama/Llama-2-7b-chat-hf
language:
- vi
---

# Vietnamese Fine-tuned Llama-2-7b-chat-hf

This repository contains a Vietnamese-tuned version of the `Llama-2-7b-chat-hf` model, which has been fine-tuned on Vietnamese datasets using LoRA (Low-Rank Adaptation) techniques.



## Model Details

This model is a fine-tuned version of the Llama-2-7b-chat-hf model, specifically adapted for improved performance on Vietnamese language tasks. It uses LoRA fine-tuning to efficiently adapt the large language model to Vietnamese data while maintaining much of the original model's general knowledge and capabilities.

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [Daniel Du](https://github.com/danghoangnhan)
- **Model type:** Large Language Model
- **Language(s) (NLP):** Vietnamese
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- **Language:** Vietnamese


### Direct Use

You can use this model directly with the Hugging Face Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig

# Load the base model
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")

# Load the LoRA configuration and model
peft_model_id = "CallMeMrFern/Llama-2-7b-chat-hf_vn"
config = PeftConfig.from_pretrained(peft_model_id)
model = PeftModel.from_pretrained(base_model, peft_model_id)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")

# Example usage
input_text = "Xin chào, hôm nay thời tiết thế nào?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```


### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

- This model is specifically fine-tuned for Vietnamese and may not perform as well on other languages.
- The model inherits limitations from the base Llama-2-7b-chat-hf model.
- Performance may vary depending on the specific task and domain.

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

Dataset: alpaca_translate_GPT_35_10_20k.json (Vietnamese translation of the Alpaca dataset)



#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results


#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]


### Model Architecture and Objective

[More Information Needed]

## Citation
If you use this model in your research, please cite:

```
@misc{vietnamese_llama2_7b_chat,
  author = {[Your Name]},
  title = {Vietnamese Fine-tuned Llama-2-7b-chat-hf},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://huggingface.co/CallMeMrFern/Llama-2-7b-chat-hf_vn}}
}
```

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32

### Framework versions


- PEFT 0.6.3.dev0


## Model Description

This model is a fine-tuned version of the Llama-2-7b-chat-hf model, specifically adapted for improved performance on Vietnamese language tasks. It uses LoRA fine-tuning to efficiently adapt the large language model to Vietnamese data while maintaining much of the original model's general knowledge and capabilities.

## Fine-tuning Details

- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- **LoRA Config:** 
  - Target Modules: `["q_proj", "v_proj"]`
  - Precision: 8-bit
- **Dataset:** `alpaca_translate_GPT_35_10_20k.json` (Vietnamese translation of the Alpaca dataset)

## Training Procedure

The model was fine-tuned using the following command:

```bash
python finetune/lora.py \
--base_model meta-llama/Llama-2-7b-chat-hf \
--model_type llama \
--data_dir data/general/alpaca_translate_GPT_35_10_20k.json \
--output_dir finetuned/meta-llama/Llama-2-7b-chat-hf \
--lora_target_modules '["q_proj", "v_proj"]' \
--micro_batch_size 1
```

For multi-GPU training, a distributed training approach was used.

## Evaluation Results

[Include any evaluation results, perplexity scores, or benchmark performances here]


## Acknowledgements

- This project is part of the TF07 Course offered by ProtonX.
- We thank the creators of the original Llama-2-7b-chat-hf model and the Hugging Face team for their tools and resources.
- Appreciation to [VietnamAIHub/Vietnamese_LLMs](https://github.com/VietnamAIHub/Vietnamese_LLMs) for the translated dataset.