--- datasets: [] language: - en library_name: coremltools tags: - coreml - whisper - speech-recognition license: apache-2.0 task: - type: automatic-speech-recognition --- # Core ML Whisper Large V3 Turbo (FP16) Core ML export of [`openai/whisper-large-v3-turbo`](https://huggingface.co/openai/whisper-large-v3-turbo) tuned for Apple Silicon. The bundle reflects the *Option A1* configuration and reaches ~0.024 real-time factor (RTF) when `DecoderWithCache.mlpackage` is used. ## Files - `whisper-large-v3-turbo-coreml-fp16/Encoder.mlpackage` - `whisper-large-v3-turbo-coreml-fp16/DecoderWithCache.mlpackage` (primary, tensor KV cache) - `whisper-large-v3-turbo-coreml-fp16/DecoderFull.mlpackage` (fallback) - `whisper-large-v3-turbo-coreml-fp16/DecoderStateful.mlpackage` (experimental MLState build) - Tokenizer + mel assets (`tokenizer.json`, `vocab.json`, `merges.txt`, `whisper_mel_filters.json`, etc.) - `whisper-large-v3-turbo-coreml-fp16.tar.gz` and `whisper-large-v3-turbo-coreml-fp16.sha256` ## Download & Verify ```bash hf download DRTR-J/whisper-large-v3-turbo-coreml-fp16 whisper-large-v3-turbo-coreml-fp16.tar.gz hf download DRTR-J/whisper-large-v3-turbo-coreml-fp16 whisper-large-v3-turbo-coreml-fp16.sha256 shasum -a 256 -c whisper-large-v3-turbo-coreml-fp16.sha256 tar -xzf whisper-large-v3-turbo-coreml-fp16.tar.gz ``` ## Usage 1. Load `Encoder.mlpackage` and `DecoderWithCache.mlpackage` with Core ML (`MLModel(contentsOf:)`, `MLModelConfiguration(computeUnits: .cpuAndNeuralEngine)`). 2. Feed the tokenizer assets into Hugging Face `AutoProcessor`/`tokenizers` to maintain parity with the PyTorch reference. 3. Optionally fall back to: - `DecoderFull.mlpackage` for non-cached decoding. - `DecoderStateful.mlpackage` for experimentation (ANE planner still returns error -14 on macOS 15 betas).