# Whisper Large V3 Turbo · Core ML (Option A1) Optimized Core ML export of `openai/whisper-large-v3-turbo` targeting Apple Silicon. This repository distributes the production bundle used to reach ~0.024 real-time factor (RTF) described in the Option A1 implementation plan. ## Contents - `whisper-large-v3-turbo-coreml-fp16/` – unpacked model bundle with encoder/decoder mlpackages, tokenizer assets, and metadata. - `whisper-large-v3-turbo-coreml-fp16.tar.gz` – identical bundle packaged as a tarball for one-shot download. - `whisper-large-v3-turbo-coreml-fp16.sha256` – checksum for the tarball. Inside the directory you will find: - `Encoder.mlpackage` - `DecoderWithCache.mlpackage` (primary, tensor-cache decoder) - `DecoderFull.mlpackage` (fallback) - `DecoderStateful.mlpackage` (experimental; see note below) - Tokenizer + mel filter assets and metadata JSON files - `README.md` and `MODEL_CARD.md` with usage and performance details ## Usage 1. Download the snapshot via `huggingface-cli` or `snapshot_download`: ```python from huggingface_hub import snapshot_download model_path = snapshot_download("DRTR-J/whisper-large-v3-turbo-coreml-fp16") ``` 2. Point your Core ML integration (Swift, Rust, Tauri, etc.) at `DecoderWithCache.mlpackage` to achieve the advertised RTF ≈ 0.024 on Apple Silicon. 3. The experimental `DecoderStateful.mlpackage` is included for completeness but still fails ANE planning (Core ML error -14); keep it disabled in production. For full background and performance tables, consult `whisper-large-v3-turbo-coreml-fp16/MODEL_CARD.md`. ## License - Base weights: OpenAI Whisper license - Packaging and auxiliary assets: MIT