DarkNeuron-AI commited on
Commit
1fe509f
·
verified ·
1 Parent(s): 1d79474

Upload 5 files

Browse files
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ water_potability_model.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - confusion_matrix
11
+ pipeline_tag: tabular-classification
12
+ library_name: sklearn
13
+ tags:
14
+ - Water Potability
15
+ - Random Forest
16
+ - Standard Scaler
17
+ ---
18
+
19
+ # 💧 HydraSense - Water Potability Classifier Model (v1.0)
20
+
21
+ A lightweight **Random Forest + StandardScaler** based water potability prediction model developed by **DarkNeuronAI**.
22
+ It classifies water as **Potable (1)** or **Not Potable (0)** based on chemical and physical features — ideal for simple tabular classification tasks.
23
+
24
+ ---
25
+
26
+ ## 🚀 Features
27
+ - Fast and efficient — runs easily on standard laptops
28
+ - Trained with real-world water quality datasets
29
+ - Predicts potability from features like **pH, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic Carbon, Trihalomethanes, Turbidity**
30
+ - Uses a **pipeline** to automatically scale and preprocess input data
31
+ - Easy to use and integrate
32
+
33
+ ---
34
+
35
+ ## 🚀 Model Overview
36
+ - **Algorithm:** Random Forest Classifier
37
+ - **Preprocessing:** StandardScaler (automatic feature scaling)
38
+ - **Goal:** Predict whether water is safe to drink (Potable) or unsafe (Not Potable)
39
+ - **Performance:** Accurate classification on real-world datasets
40
+
41
+ ---
42
+
43
+ ## 🧩 Files Included
44
+ - `water_potability_model.pkl` → Trained Random Forest pipeline (scaler + model)
45
+ - `example_usage.py` → Example code to use the model
46
+ - `requirements.txt` → Dependencies list
47
+
48
+ ---
49
+
50
+ ## 🏷️ Prediction Labels (Binary)
51
+ - **0:** Not Potable (Unsafe to drink)
52
+ - **1:** Potable (Safe to drink)
53
+
54
+ ---
55
+
56
+ ## 💡 How to Use (Example Code)
57
+ ```python
58
+ from huggingface_hub import hf_hub_download
59
+ import joblib
60
+ import pandas as pd
61
+
62
+ # Download and load the trained pipeline
63
+ pipeline_path = hf_hub_download("DarkNeuron-AI/darkneuron-hydrasense-v1", "water_potability_model.pkl")
64
+ model = joblib.load(pipeline_path)
65
+
66
+ # Example water sample
67
+ sample_data = {
68
+ 'ph': [7.2],
69
+ 'Hardness': [180],
70
+ 'Solids': [15000],
71
+ 'Chloramines': [8.3],
72
+ 'Sulfate': [350],
73
+ 'Conductivity': [450],
74
+ 'Organic_carbon': [10],
75
+ 'Trihalomethanes': [70],
76
+ 'Turbidity': [3]
77
+ }
78
+
79
+ sample_df = pd.DataFrame(sample_data)
80
+
81
+ # Predict potability
82
+ prediction = model.predict(sample_df)
83
+
84
+ print("Prediction:", "💧 Potable" if prediction[0] == 1 else "⚠️ Not Potable")
85
+ ```
86
+
87
+ # Developed With ❤️ By DarkNeuronAI
example_usage.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import joblib
3
+
4
+ # Load the saved pipeline
5
+ try:
6
+ model = joblib.load('water_potability_model.pkl')
7
+ print("Model loaded successfully!")
8
+ except FileNotFoundError:
9
+ print("Error: The file 'water_potability_model.pkl' was not found.")
10
+ exit()
11
+ except Exception as e:
12
+ print("An unexpected error occurred while loading the pipeline:", e)
13
+ exit()
14
+
15
+ # Create a new water sample
16
+ # IMPORTANT: Use the same feature order and names as in training
17
+ sample_data = {
18
+ 'ph': [7.2],
19
+ 'Hardness': [180],
20
+ 'Solids': [15000],
21
+ 'Chloramines': [8.3],
22
+ 'Sulfate': [350],
23
+ 'Conductivity': [450],
24
+ 'Organic_carbon': [10],
25
+ 'Trihalomethanes': [70],
26
+ 'Turbidity': [3]
27
+ }
28
+
29
+ # Convert to DataFrame with proper column names
30
+ sample_df = pd.DataFrame(sample_data)
31
+
32
+ # Make prediction
33
+ try:
34
+ prediction = model.predict(sample_df)
35
+ result = "Potable" if prediction[0] == 1 else "Not Potable"
36
+ print("Sample Prediction:", result)
37
+ except ValueError as e:
38
+ print("Error: Sample input has incorrect shape or type.", e)
39
+ except Exception as e:
40
+ print("An unexpected error occurred during prediction:", e)
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas
2
+ scikit-learn
3
+ joblib
water_potability_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66ec01a9cc1916a5e08243d4136a92c103ac40ad2f5118c2dd0a23f7df2e895
3
+ size 7343234