feat: readme
Browse files
README.md
CHANGED
|
@@ -1,3 +1,386 @@
|
|
| 1 |
---
|
| 2 |
license: openrail
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: openrail
|
| 3 |
+
language:
|
| 4 |
+
- ru
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
---
|
| 7 |
+
---
|
| 8 |
+
language:
|
| 9 |
+
- ru
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for Model ID
|
| 13 |
+
|
| 14 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 15 |
+
|
| 16 |
+
# Model Details
|
| 17 |
+
|
| 18 |
+
## Model Description
|
| 19 |
+
|
| 20 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 21 |
+
|
| 22 |
+
- **Developed by:** Deeppavlov team
|
| 23 |
+
- **Model type:** seq2seq
|
| 24 |
+
- **Language(s) (NLP):** Russian
|
| 25 |
+
- **License:** MIT
|
| 26 |
+
- **Finetuned from model:** [facebook/mbart-large-50](facebook/mbart-large-50)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Uses
|
| 30 |
+
|
| 31 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
## Direct Use
|
| 35 |
+
|
| 36 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from typing import List, TypedDict
|
| 40 |
+
from dataclasses import dataclass
|
| 41 |
+
from itertools import chain
|
| 42 |
+
|
| 43 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 44 |
+
import torch
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class H2PersonaChatHyperparametersV1:
|
| 49 |
+
"""
|
| 50 |
+
chat_history_pair_length: int - количество пар диалога с конца
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
model_name: str = "facebook/bart-base"
|
| 54 |
+
chat_history_pair_length: int = 7
|
| 55 |
+
|
| 56 |
+
persona_max_length: int = 14
|
| 57 |
+
chat_max_length: int = 25
|
| 58 |
+
|
| 59 |
+
debug_status: int = 0
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class PersonaChatDatasetSampleV1(TypedDict):
|
| 63 |
+
"""
|
| 64 |
+
persona: List[str] - набор предложений фактов персоны
|
| 65 |
+
history: List[str] - набор предложений истории переписки
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
persona: List[str]
|
| 69 |
+
history: List[str]
|
| 70 |
+
sample_id: str
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class H2Seq2SeqInferenceSampleDictV1(TypedDict):
|
| 74 |
+
input_ids: List[int]
|
| 75 |
+
attention_mask: List[int]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class H2Seq2SeqInferenceSampleDictV2(TypedDict):
|
| 79 |
+
input_ids: torch.Tensor
|
| 80 |
+
attention_mask: torch.Tensor
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def flat_list(list_of_lists: List[List]) -> List:
|
| 84 |
+
return list(chain.from_iterable(list_of_lists))
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class H2Seq2SeqInferencePersonaSampleV1:
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
dataset_sample: PersonaChatDatasetSampleV1,
|
| 91 |
+
tokenizer: AutoTokenizer,
|
| 92 |
+
hyperparameters: H2PersonaChatHyperparametersV1,
|
| 93 |
+
) -> None:
|
| 94 |
+
self.dataset_sample = dataset_sample
|
| 95 |
+
self.tokenizer = tokenizer
|
| 96 |
+
self.hyperparameters = hyperparameters
|
| 97 |
+
|
| 98 |
+
def add_spaces_after(
|
| 99 |
+
self,
|
| 100 |
+
items: List[str],
|
| 101 |
+
) -> List[str]:
|
| 102 |
+
items = [item + " " for item in items]
|
| 103 |
+
return items
|
| 104 |
+
|
| 105 |
+
@property
|
| 106 |
+
def bos_token_id(self):
|
| 107 |
+
if "t5" in self.hyperparameters.model_name:
|
| 108 |
+
return []
|
| 109 |
+
|
| 110 |
+
if self.tokenizer.bos_token_id is None:
|
| 111 |
+
return []
|
| 112 |
+
|
| 113 |
+
return [self.tokenizer.bos_token_id]
|
| 114 |
+
|
| 115 |
+
@property
|
| 116 |
+
def eos_token_id(self):
|
| 117 |
+
if self.tokenizer.eos_token_id is None:
|
| 118 |
+
return []
|
| 119 |
+
|
| 120 |
+
return [self.tokenizer.eos_token_id]
|
| 121 |
+
|
| 122 |
+
def add_sep_beetween(self, items: List[str], sep=" EOS ") -> List[str]:
|
| 123 |
+
for i in range(1, len(items)):
|
| 124 |
+
items[i] = sep + items[i]
|
| 125 |
+
|
| 126 |
+
return items
|
| 127 |
+
|
| 128 |
+
def add_spaces_between(self, items: List[str]) -> List[str]:
|
| 129 |
+
items = self.add_spaces_after(items)
|
| 130 |
+
items[-1] = items[-1].strip()
|
| 131 |
+
return items
|
| 132 |
+
|
| 133 |
+
def get_sample(self) -> H2Seq2SeqInferenceSampleDictV1:
|
| 134 |
+
|
| 135 |
+
dialog_history = self.dataset_sample["history"]
|
| 136 |
+
dialog_history = dialog_history[-self.hyperparameters.chat_history_pair_length * 2 - 1 :]
|
| 137 |
+
dialog_history = self.add_sep_beetween(dialog_history)
|
| 138 |
+
|
| 139 |
+
persona = self.dataset_sample["persona"]
|
| 140 |
+
persona = self.add_sep_beetween(
|
| 141 |
+
persona,
|
| 142 |
+
sep=" ",
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
KNOWLEDGE_IDS = self.tokenizer.encode(
|
| 146 |
+
" [KNOWLEDGE] ",
|
| 147 |
+
add_special_tokens=False,
|
| 148 |
+
)
|
| 149 |
+
CONTEXT_IDS = self.tokenizer.encode(
|
| 150 |
+
" [CONTEXT]",
|
| 151 |
+
add_special_tokens=False,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
encoded_history = self.tokenizer.batch_encode_plus(
|
| 155 |
+
dialog_history,
|
| 156 |
+
add_special_tokens=False,
|
| 157 |
+
truncation=True,
|
| 158 |
+
max_length=self.hyperparameters.chat_max_length,
|
| 159 |
+
)
|
| 160 |
+
encoded_history = flat_list(encoded_history["input_ids"])
|
| 161 |
+
|
| 162 |
+
encoded_persona = self.tokenizer.batch_encode_plus(
|
| 163 |
+
persona,
|
| 164 |
+
add_special_tokens=False,
|
| 165 |
+
truncation=True,
|
| 166 |
+
max_length=self.hyperparameters.persona_max_length,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
encoded_persona = flat_list(encoded_persona["input_ids"])
|
| 170 |
+
|
| 171 |
+
input_ids = [
|
| 172 |
+
*self.bos_token_id,
|
| 173 |
+
*CONTEXT_IDS,
|
| 174 |
+
*encoded_history,
|
| 175 |
+
*KNOWLEDGE_IDS,
|
| 176 |
+
*encoded_persona,
|
| 177 |
+
*self.eos_token_id,
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
+
attention_mask = [1] * len(input_ids)
|
| 181 |
+
|
| 182 |
+
return H2Seq2SeqInferenceSampleDictV1(
|
| 183 |
+
input_ids=input_ids,
|
| 184 |
+
attention_mask=attention_mask,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class DialogBotV1:
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
model: AutoModelForSeq2SeqLM,
|
| 192 |
+
tokenizer: AutoTokenizer,
|
| 193 |
+
hyperparameters: H2PersonaChatHyperparametersV1,
|
| 194 |
+
history: List[str] = None,
|
| 195 |
+
persona: List[str] = None,
|
| 196 |
+
device: str = "cuda",
|
| 197 |
+
shuffle_persona: bool = True,
|
| 198 |
+
):
|
| 199 |
+
self.model = model
|
| 200 |
+
|
| 201 |
+
self.tokenizer = tokenizer
|
| 202 |
+
self.hyperparameters = hyperparameters
|
| 203 |
+
self.device = device
|
| 204 |
+
self.shuffle_persona = shuffle_persona
|
| 205 |
+
|
| 206 |
+
self.debug_status = hyperparameters.debug_status
|
| 207 |
+
|
| 208 |
+
if history is None:
|
| 209 |
+
self.history = []
|
| 210 |
+
self.history = history
|
| 211 |
+
|
| 212 |
+
if persona is None:
|
| 213 |
+
self.persona = []
|
| 214 |
+
self.persona = persona
|
| 215 |
+
|
| 216 |
+
def _get_sample(
|
| 217 |
+
self,
|
| 218 |
+
persona: List[str],
|
| 219 |
+
history: List[str],
|
| 220 |
+
) -> H2Seq2SeqInferenceSampleDictV1:
|
| 221 |
+
dataset_sample = PersonaChatDatasetSampleV1(
|
| 222 |
+
persona=persona,
|
| 223 |
+
history=history,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
sample = H2Seq2SeqInferencePersonaSampleV1(
|
| 227 |
+
tokenizer=self.tokenizer,
|
| 228 |
+
hyperparameters=self.hyperparameters,
|
| 229 |
+
dataset_sample=dataset_sample,
|
| 230 |
+
)
|
| 231 |
+
sample = sample.get_sample()
|
| 232 |
+
print(self.tokenizer.decode(sample['input_ids']))
|
| 233 |
+
|
| 234 |
+
for key in sample.keys():
|
| 235 |
+
sample[key] = torch.tensor(sample[key]).unsqueeze(0).to(self.device)
|
| 236 |
+
|
| 237 |
+
return sample
|
| 238 |
+
|
| 239 |
+
def next_response(
|
| 240 |
+
self,
|
| 241 |
+
**generation_params,
|
| 242 |
+
) -> str:
|
| 243 |
+
"""
|
| 244 |
+
делает предсказание на основе текущей истории
|
| 245 |
+
и персоны
|
| 246 |
+
"""
|
| 247 |
+
|
| 248 |
+
sample = self._get_sample(
|
| 249 |
+
persona=self.persona,
|
| 250 |
+
history=self.history,
|
| 251 |
+
)
|
| 252 |
+
answer = self.generate_response(
|
| 253 |
+
sample,
|
| 254 |
+
**generation_params,
|
| 255 |
+
)
|
| 256 |
+
answer = self.tokenizer.batch_decode(
|
| 257 |
+
answer,
|
| 258 |
+
skip_special_tokens=True,
|
| 259 |
+
)
|
| 260 |
+
self.history.append(answer[0])
|
| 261 |
+
return answer[0]
|
| 262 |
+
|
| 263 |
+
def generate_response(
|
| 264 |
+
self,
|
| 265 |
+
sample: H2Seq2SeqInferenceSampleDictV1,
|
| 266 |
+
**generation_params,
|
| 267 |
+
):
|
| 268 |
+
"""
|
| 269 |
+
generation_params - https://huggingface.co/docs/transformers/v4.24.0/en/main_classes/text_generation
|
| 270 |
+
"""
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
return self.model.generate(
|
| 273 |
+
**sample,
|
| 274 |
+
**generation_params,
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# facebook/mbart-large-50
|
| 279 |
+
PRETRAINED_MODEL_NAME_OR_PATH = "DeepPavlov/mbart-large-50-ru-persona-chat"
|
| 280 |
+
|
| 281 |
+
PAIR_DIALOG_HISTORY_LENGTH = 2
|
| 282 |
+
|
| 283 |
+
# CHAT_MAX_LENGTH for single sentence
|
| 284 |
+
CHAT_MAX_LENGTH = 25
|
| 285 |
+
# PERSONA_MAX_LENGTH for single sentence
|
| 286 |
+
PERSONA_MAX_LENGTH = 19
|
| 287 |
+
|
| 288 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 289 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(PRETRAINED_MODEL_NAME_OR_PATH)
|
| 290 |
+
model.to(device)
|
| 291 |
+
model.eval()
|
| 292 |
+
|
| 293 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME_OR_PATH)
|
| 294 |
+
|
| 295 |
+
if torch.cuda.is_available():
|
| 296 |
+
model.half()
|
| 297 |
+
|
| 298 |
+
hyperparameters = H2PersonaChatHyperparametersV1(
|
| 299 |
+
chat_history_pair_length=PAIR_DIALOG_HISTORY_LENGTH,
|
| 300 |
+
persona_max_length=PERSONA_MAX_LENGTH,
|
| 301 |
+
chat_max_length=CHAT_MAX_LENGTH,
|
| 302 |
+
model_name=PRETRAINED_MODEL_NAME_OR_PATH,
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
persona = [
|
| 307 |
+
"Я люблю играть с милыми песиками",
|
| 308 |
+
"Я ненавижу лук и броколли"
|
| 309 |
+
]
|
| 310 |
+
|
| 311 |
+
history = [
|
| 312 |
+
"Привет. Ты любишь лук?"
|
| 313 |
+
]
|
| 314 |
+
|
| 315 |
+
persona_bot = DialogBotV1(
|
| 316 |
+
model=model,
|
| 317 |
+
tokenizer=tokenizer,
|
| 318 |
+
hyperparameters=hyperparameters,
|
| 319 |
+
history=history,
|
| 320 |
+
persona=persona,
|
| 321 |
+
device=device,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
GENERATION_PARAMS = {
|
| 325 |
+
"max_new_tokens": 60,
|
| 326 |
+
"penalty_alpha": 0.15,
|
| 327 |
+
"top_k": 10
|
| 328 |
+
}
|
| 329 |
+
response = persona_bot.next_response(
|
| 330 |
+
**GENERATION_PARAMS,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
print(response)
|
| 334 |
+
|
| 335 |
+
```
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
## Recommendations
|
| 339 |
+
|
| 340 |
+
# Training Details
|
| 341 |
+
|
| 342 |
+
## Training Data
|
| 343 |
+
|
| 344 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 345 |
+
- [Data Source | RU Persona Chat](https://toloka.ai/ru/datasets/#nlp)
|
| 346 |
+
|
| 347 |
+
[More Information Needed]
|
| 348 |
+
|
| 349 |
+
### Preprocessing
|
| 350 |
+
|
| 351 |
+
- Initial data was splitted by this script:
|
| 352 |
+
```python
|
| 353 |
+
def ru_persona_chat_dataset_tranformer_v1(
|
| 354 |
+
initial_dataset_path: str,
|
| 355 |
+
output_folder: str,
|
| 356 |
+
) -> None:
|
| 357 |
+
"""
|
| 358 |
+
example
|
| 359 |
+
ru_persona_chat_dataset_tranformer_v1(
|
| 360 |
+
initial_dataset_path="./datasets/ru_persona_chat/dialogues.tsv",
|
| 361 |
+
output_folder="./datasets/ru_persona_chat",
|
| 362 |
+
)
|
| 363 |
+
"""
|
| 364 |
+
assert initial_dataset_path is not None, "initial_dataset_path is None"
|
| 365 |
+
assert output_folder is not None, "output_folder is None"
|
| 366 |
+
|
| 367 |
+
dataset = pd.read_csv(initial_dataset_path, sep="\t")
|
| 368 |
+
split_ratio = int(len(dataset) * 0.95)
|
| 369 |
+
train_dataset = dataset[:split_ratio]
|
| 370 |
+
valid_dataset = dataset[split_ratio:]
|
| 371 |
+
|
| 372 |
+
print(f"Dataset lengths: train {len(train_dataset)}, valid {len(valid_dataset)}")
|
| 373 |
+
# save csv files
|
| 374 |
+
train_dataset.to_csv(output_folder + "/train.csv", index=False)
|
| 375 |
+
valid_dataset.to_csv(output_folder + "/valid.csv", index=False)
|
| 376 |
+
print("Datasets saved.")
|
| 377 |
+
```
|
| 378 |
+
|
| 379 |
+
# Evaluation
|
| 380 |
+
|
| 381 |
+
### Metrics
|
| 382 |
+
|
| 383 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 384 |
+
- BLUEL
|
| 385 |
+
- CharF
|
| 386 |
+
- RougeL
|