Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,211 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
###
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
[
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
[
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- text-classification
|
| 7 |
+
- url-classification
|
| 8 |
+
- bert
|
| 9 |
+
- domain-classification
|
| 10 |
+
pipeline_tag: text-classification
|
| 11 |
+
widget:
|
| 12 |
+
- text: "https://acmewidgets.com"
|
| 13 |
+
- text: "https://store.myshopify.com"
|
| 14 |
+
- text: "https://example.wixsite.com/store"
|
| 15 |
+
- text: "https://business.com"
|
| 16 |
+
datasets:
|
| 17 |
+
- custom
|
| 18 |
+
metrics:
|
| 19 |
+
- accuracy
|
| 20 |
+
- f1
|
| 21 |
+
- precision
|
| 22 |
+
- recall
|
| 23 |
+
model-index:
|
| 24 |
+
- name: urlbert-url-classifier
|
| 25 |
+
results:
|
| 26 |
+
- task:
|
| 27 |
+
type: text-classification
|
| 28 |
+
name: URL Classification
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 0.99
|
| 32 |
+
name: Test Accuracy
|
| 33 |
+
- type: f1
|
| 34 |
+
value: 0.99
|
| 35 |
+
name: Test F1 Score
|
| 36 |
+
- type: precision
|
| 37 |
+
value: 0.99
|
| 38 |
+
name: Test Precision
|
| 39 |
+
- type: recall
|
| 40 |
+
value: 0.99
|
| 41 |
+
name: Test Recall
|
| 42 |
---
|
| 43 |
|
| 44 |
+
# URL Classifier
|
| 45 |
|
| 46 |
+
A fine-tuned BERT model for binary classification of URLs as either **platform listings** (e.g., `*.myshopify.com`, `*.wixsite.com`) or **official websites** (e.g., `acmewidgets.com`).
|
| 47 |
|
| 48 |
+
## Model Description
|
| 49 |
|
| 50 |
+
This model is a fine-tuned version of [amahdaouy/DomURLs_BERT](https://huggingface.co/amahdaouy/DomURLs_BERT) trained to distinguish between:
|
| 51 |
|
| 52 |
+
- **LABEL_0 (official_website)**: Direct company/brand websites
|
| 53 |
+
- **LABEL_1 (platform)**: Third-party platform listings (Shopify, Wix, etc.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
## Training Details
|
| 56 |
|
| 57 |
+
### Base Model
|
| 58 |
+
- **Architecture**: BERT for Sequence Classification
|
| 59 |
+
- **Base Model**: `amahdaouy/DomURLs_BERT`
|
| 60 |
+
- **Tokenizer**: `CrabInHoney/urlbert-tiny-base-v4`
|
| 61 |
+
|
| 62 |
+
### Training Configuration
|
| 63 |
+
| Parameter | Value |
|
| 64 |
+
|-----------|-------|
|
| 65 |
+
| **Epochs** | 20 |
|
| 66 |
+
| **Learning Rate** | 2e-5 |
|
| 67 |
+
| **Batch Size** | 32 |
|
| 68 |
+
| **Max Sequence Length** | 64 tokens |
|
| 69 |
+
| **Optimizer** | AdamW |
|
| 70 |
+
| **Weight Decay** | 0.01 |
|
| 71 |
+
| **LR Scheduler** | ReduceLROnPlateau |
|
| 72 |
+
| **Early Stopping** | Patience: 3, Threshold: 0.001 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
### Training Data
|
| 75 |
+
- Custom curated dataset of platform and official website URLs
|
| 76 |
+
- Balanced training set with equal representation of both classes
|
| 77 |
+
- Domain-specific preprocessing and data augmentation
|
| 78 |
+
|
| 79 |
+
## Performance
|
| 80 |
+
|
| 81 |
+
### Test Set Metrics
|
| 82 |
+
| Metric | Threshold | Achieved |
|
| 83 |
+
|--------|-----------|----------|
|
| 84 |
+
| **Accuracy** | β₯ 0.80 | **β₯ 0.99** β
|
|
| 85 |
+
| **F1 Score** | β₯ 0.80 | **β₯ 0.99** β
|
|
| 86 |
+
| **Precision** | β₯ 0.80 | **β₯ 0.99** β
|
|
| 87 |
+
| **Recall** | β₯ 0.80 | **β₯ 0.99** β
|
|
| 88 |
+
| **False Positive Rate** | β€ 0.15 | **< 0.01** β
|
|
| 89 |
+
| **False Negative Rate** | β€ 0.15 | **< 0.01** β
|
|
| 90 |
+
|
| 91 |
+
### Example Predictions
|
| 92 |
+
- `https://acmewidgets.com` β **official_website** (99.98% confidence)
|
| 93 |
+
- `https://store.myshopify.com` β **platform** (75.96% confidence)
|
| 94 |
+
- `https://example.wixsite.com/store` β **platform** (high confidence)
|
| 95 |
+
|
| 96 |
+
## Usage
|
| 97 |
+
|
| 98 |
+
### Direct Inference with Transformers
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 102 |
+
import torch
|
| 103 |
+
|
| 104 |
+
# Load model and tokenizer
|
| 105 |
+
model_name = "DiligentAI/urlbert-url-classifier"
|
| 106 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 107 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 108 |
+
|
| 109 |
+
# Classify URL
|
| 110 |
+
url = "https://acmewidgets.com"
|
| 111 |
+
inputs = tokenizer(url, return_tensors="pt", truncation=True, max_length=64)
|
| 112 |
+
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
outputs = model(**inputs)
|
| 115 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 116 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
| 117 |
+
confidence = predictions[0][predicted_class].item()
|
| 118 |
+
|
| 119 |
+
label_map = {0: "official_website", 1: "platform"}
|
| 120 |
+
print(f"Prediction: {label_map[predicted_class]} ({confidence:.2%})")
|
| 121 |
+
Using Hugging Face Pipeline
|
| 122 |
+
from transformers import pipeline
|
| 123 |
+
|
| 124 |
+
classifier = pipeline("text-classification", model="DiligentAI/urlbert-url-classifier")
|
| 125 |
+
result = classifier("https://store.myshopify.com")
|
| 126 |
+
print(result)
|
| 127 |
+
# [{'label': 'LABEL_1', 'score': 0.7596}]
|
| 128 |
+
Pydantic Integration (Production-Ready)
|
| 129 |
+
from transformers import pipeline
|
| 130 |
+
from pydantic import BaseModel, Field
|
| 131 |
+
from typing import Literal
|
| 132 |
+
|
| 133 |
+
class URLClassificationResult(BaseModel):
|
| 134 |
+
url: str
|
| 135 |
+
label: Literal["official_website", "platform"]
|
| 136 |
+
confidence: float = Field(..., ge=0.0, le=1.0)
|
| 137 |
+
|
| 138 |
+
def classify_url(url: str) -> URLClassificationResult:
|
| 139 |
+
classifier = pipeline("text-classification", model="DiligentAI/urlbert-url-classifier")
|
| 140 |
+
result = classifier(url[:64])[0] # Truncate to max_length
|
| 141 |
+
|
| 142 |
+
label_map = {"LABEL_0": "official_website", "LABEL_1": "platform"}
|
| 143 |
+
|
| 144 |
+
return URLClassificationResult(
|
| 145 |
+
url=url,
|
| 146 |
+
label=label_map[result["label"]],
|
| 147 |
+
confidence=result["score"]
|
| 148 |
+
)
|
| 149 |
+
Limitations and Bias
|
| 150 |
+
Max URL Length: Model trained on 64-token sequences. Longer URLs are truncated.
|
| 151 |
+
Domain Focus: Optimized for e-commerce and business websites
|
| 152 |
+
Platform Coverage: Best performance on common platforms (Shopify, Wix, etc.)
|
| 153 |
+
Language: Primarily trained on English-language domains
|
| 154 |
+
Edge Cases: May have lower confidence on:
|
| 155 |
+
Uncommon TLDs
|
| 156 |
+
Very short URLs
|
| 157 |
+
Internationalized domain names
|
| 158 |
+
Intended Use
|
| 159 |
+
Primary Use Cases:
|
| 160 |
+
URL filtering and categorization pipelines
|
| 161 |
+
Lead qualification systems
|
| 162 |
+
Web scraping and data collection workflows
|
| 163 |
+
Business intelligence and market research
|
| 164 |
+
Out of Scope:
|
| 165 |
+
Content classification (only URL structure is analyzed)
|
| 166 |
+
Malicious URL detection (use dedicated security models)
|
| 167 |
+
Language detection
|
| 168 |
+
Spam filtering
|
| 169 |
+
Model Card Authors
|
| 170 |
+
DiligentAI Team
|
| 171 |
+
Citation
|
| 172 |
+
@misc{urlbert-classifier-2025,
|
| 173 |
+
author = {DiligentAI},
|
| 174 |
+
title = {URL Classifier - Platform vs Official Website Detection},
|
| 175 |
+
year = {2025},
|
| 176 |
+
publisher = {HuggingFace},
|
| 177 |
+
howpublished = {\url{https://huggingface.co/DiligentAI/urlbert-url-classifier}}
|
| 178 |
+
}
|
| 179 |
+
License
|
| 180 |
+
MIT License
|
| 181 |
+
Framework Versions
|
| 182 |
+
Transformers: 4.57.0+
|
| 183 |
+
PyTorch: 2.0.0+
|
| 184 |
+
Python: 3.10+
|
| 185 |
+
Training Infrastructure
|
| 186 |
+
Framework: PyTorch + Hugging Face Transformers
|
| 187 |
+
Pipeline Orchestration: DVC (Data Version Control)
|
| 188 |
+
CI/CD: GitHub Actions
|
| 189 |
+
Model Format: Safetensors
|
| 190 |
+
Dependencies: See repository
|
| 191 |
+
Model Versioning
|
| 192 |
+
This model is automatically versioned and deployed via GitHub Actions. Each release includes:
|
| 193 |
+
Model checkpoint (.safetensors)
|
| 194 |
+
Tokenizer configuration
|
| 195 |
+
Label mapping (label_map.json)
|
| 196 |
+
Performance metrics (metrics.json)
|
| 197 |
+
Contact
|
| 198 |
+
For issues, questions, or feedback:
|
| 199 |
+
GitHub: DiligentAI/url-classifier
|
| 200 |
+
Organization: DiligentAI
|
| 201 |
+
|
| 202 |
+
This model card includes:
|
| 203 |
+
|
| 204 |
+
1. **Metadata** (YAML front matter) for HuggingFace widgets and indexing
|
| 205 |
+
2. **Model description** and purpose
|
| 206 |
+
3. **Complete training details** from your config
|
| 207 |
+
4. **Performance metrics** with quality gates
|
| 208 |
+
5. **Usage examples** (transformers, pipeline, Pydantic)
|
| 209 |
+
6. **Limitations** and intended use cases
|
| 210 |
+
7. **Citation** and licensing information
|
| 211 |
+
8. **Technical specifications** and dependencies
|