Doctor-Shotgun commited on
Commit
5b5e06e
·
verified ·
1 Parent(s): e07f9e4

Training in progress, step 372, checkpoint

Browse files
Files changed (36) hide show
  1. .gitattributes +1 -0
  2. checkpoint-372/README.md +202 -0
  3. checkpoint-372/adapter_config.json +42 -0
  4. checkpoint-372/adapter_model.safetensors +3 -0
  5. checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-372/global_step372/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-372/global_step372/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-372/global_step372/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-372/global_step372/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-372/global_step372/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-372/global_step372/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-372/global_step372/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-372/global_step372/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-372/global_step372/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-372/global_step372/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-372/global_step372/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-372/global_step372/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-372/latest +1 -0
  22. checkpoint-372/rng_state_0.pth +3 -0
  23. checkpoint-372/rng_state_1.pth +3 -0
  24. checkpoint-372/rng_state_2.pth +3 -0
  25. checkpoint-372/rng_state_3.pth +3 -0
  26. checkpoint-372/rng_state_4.pth +3 -0
  27. checkpoint-372/rng_state_5.pth +3 -0
  28. checkpoint-372/rng_state_6.pth +3 -0
  29. checkpoint-372/rng_state_7.pth +3 -0
  30. checkpoint-372/scheduler.pt +3 -0
  31. checkpoint-372/special_tokens_map.json +23 -0
  32. checkpoint-372/tokenizer.json +3 -0
  33. checkpoint-372/tokenizer_config.json +2064 -0
  34. checkpoint-372/trainer_state.json +2638 -0
  35. checkpoint-372/training_args.bin +3 -0
  36. checkpoint-372/zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-186/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-186/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-372/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-372/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.3-70B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-372/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "embed_tokens",
23
+ "lm_head"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 128,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "k_proj",
31
+ "up_proj",
32
+ "o_proj",
33
+ "down_proj",
34
+ "q_proj",
35
+ "v_proj",
36
+ "gate_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": true
42
+ }
checkpoint-372/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0ca36863b3ce78a51b4094f28bff32e954a6859d12187bc346efe608121f4c
3
+ size 7516349296
checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed3286026406a1171b2b07ca46b5c94942a4cccc7cd0f61dea45deec36483e22
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:083ada4fe8a57c64b07cd2c93ac15991999b5ac7cae7d9a18c0336739a204551
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0902a3f19f5bf1f4158908ab3f5de8df7d1fb3e0cf235de9f156b39618f95e8e
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd38f536c69cb353383936bfb74ec7762a54e98ef95df079042f8299b3dfe063
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6e5cf47f7c975b8b14be8337c8132328912ccda383489ab06a6f18f02759e7
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c886975b02bc1a5a5c569563437a555521cf23653f7f5e662855fc7837faad
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec3c014465a0fa860358d699143faa286d2352b7ac7cd2a2950445be6600186
3
+ size 3312262174
checkpoint-372/global_step372/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:026db50f81769cd83ea594424f4f07f75c70f1dacef9b4037a37bcdcd4432d84
3
+ size 3312262174
checkpoint-372/global_step372/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc21e396bb3b5e6f63547df4ac8219b64eb09eb421a76c030a614b895370b3ba
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b0bc79e551e255307c667f3988338cd58440c058946b62cd4cd26cd1e2a3f12
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc5b4615e32d581ea04748d66a78b2dc4b630a403bf174f7810e5e24273eb537
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d00ccc02898de4466968bc0f4bdb89d686385e2058061b44e7fd74139b71da4
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d219c24716d600b64e30b9109b906ac60557a5b87c7ff473c251a7c7bf035e3
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33e8cd26671906681a25f0751ef26255471a61f9ea9b2edd8b2d7fe09510a6a4
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17241985b9905c5b465f8fd89998c890ffc14caf8a5baef0e21a17f26dfb8876
3
+ size 1114882
checkpoint-372/global_step372/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3841d8eb795a6824801807a20328efe0d76f3828d4e76c866e4960d6df80651b
3
+ size 1114882
checkpoint-372/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step372
checkpoint-372/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f2b79d5c51984e21ef525e7a58e0a3f83968bc1c6c365de477bbe41d7dbdb11
3
+ size 15984
checkpoint-372/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6df8083062890d57c7a94678a435824592c07831e34a5002bae44eb7875bd6d
3
+ size 15984
checkpoint-372/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bc3612e9505980c9dd14647cc6a8e757208b6fb41d4682d1badb2bff5e79eda
3
+ size 15984
checkpoint-372/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77db6ab51b603ef55324bcf197abec717856987da75bce300153328e263c05a3
3
+ size 15984
checkpoint-372/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddd4c65edbf047999f5a07c765bc2a32ea0cbbddb515bb73a8e2d7c3211d6b2d
3
+ size 15984
checkpoint-372/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8d6bfbe97fc4bb466e7956044e9c5ee9b028188a1c4235c4a6f4da461634ac5
3
+ size 15984
checkpoint-372/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4232e23f15d99d585dd7debc45fa0bbd9025d8a6e06ce83e0e19324784a03e73
3
+ size 15984
checkpoint-372/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42f4ee22810247b71a0558a93fad9c4c89d20938d5eb712b1abf61f8126560cb
3
+ size 15984
checkpoint-372/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19ec69061c25c5bc796a2c410bee42fe4ee10ca3116e192915ae542f9354770d
3
+ size 1064
checkpoint-372/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-372/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-372/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizer"
2064
+ }
checkpoint-372/trainer_state.json ADDED
@@ -0,0 +1,2638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 372,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.002688172043010753,
14
+ "grad_norm": 1.6433222600981285,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.562,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.005376344086021506,
21
+ "grad_norm": 1.6862631068558513,
22
+ "learning_rate": 1.0000000000000002e-06,
23
+ "loss": 1.4706,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.008064516129032258,
28
+ "grad_norm": 1.7423201097805276,
29
+ "learning_rate": 2.0000000000000003e-06,
30
+ "loss": 1.5406,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.010752688172043012,
35
+ "grad_norm": 1.7727625055064622,
36
+ "learning_rate": 3e-06,
37
+ "loss": 1.5182,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.013440860215053764,
42
+ "grad_norm": 1.5457482765192463,
43
+ "learning_rate": 4.000000000000001e-06,
44
+ "loss": 1.5169,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.016129032258064516,
49
+ "grad_norm": 1.5659007249743502,
50
+ "learning_rate": 5e-06,
51
+ "loss": 1.4922,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.01881720430107527,
56
+ "grad_norm": 1.3878881126089677,
57
+ "learning_rate": 6e-06,
58
+ "loss": 1.4863,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.021505376344086023,
63
+ "grad_norm": 1.295368020848385,
64
+ "learning_rate": 7e-06,
65
+ "loss": 1.4839,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.024193548387096774,
70
+ "grad_norm": 1.589857887668944,
71
+ "learning_rate": 8.000000000000001e-06,
72
+ "loss": 1.4303,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.026881720430107527,
77
+ "grad_norm": 2.60679604894195,
78
+ "learning_rate": 9e-06,
79
+ "loss": 1.3744,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02956989247311828,
84
+ "grad_norm": 0.8410885692002656,
85
+ "learning_rate": 1e-05,
86
+ "loss": 1.3498,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.03225806451612903,
91
+ "grad_norm": 0.7927855266728604,
92
+ "learning_rate": 1.1000000000000001e-05,
93
+ "loss": 1.3179,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.03494623655913978,
98
+ "grad_norm": 0.6808035050220127,
99
+ "learning_rate": 1.2e-05,
100
+ "loss": 1.3268,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.03763440860215054,
105
+ "grad_norm": 0.6602967909334083,
106
+ "learning_rate": 1.3000000000000001e-05,
107
+ "loss": 1.2784,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.04032258064516129,
112
+ "grad_norm": 0.5797556052811048,
113
+ "learning_rate": 1.4e-05,
114
+ "loss": 1.2949,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.043010752688172046,
119
+ "grad_norm": 0.6000541560518325,
120
+ "learning_rate": 1.5000000000000002e-05,
121
+ "loss": 1.288,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.0456989247311828,
126
+ "grad_norm": 0.6494981992893607,
127
+ "learning_rate": 1.6000000000000003e-05,
128
+ "loss": 1.2449,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.04838709677419355,
133
+ "grad_norm": 0.6723097988215474,
134
+ "learning_rate": 1.7e-05,
135
+ "loss": 1.2102,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.051075268817204304,
140
+ "grad_norm": 0.6702835925568053,
141
+ "learning_rate": 1.8e-05,
142
+ "loss": 1.2025,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.053763440860215055,
147
+ "grad_norm": 0.625636082792655,
148
+ "learning_rate": 1.9e-05,
149
+ "loss": 1.2777,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.056451612903225805,
154
+ "grad_norm": 0.6253912624763358,
155
+ "learning_rate": 2e-05,
156
+ "loss": 1.2669,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.05913978494623656,
161
+ "grad_norm": 0.5910337660829342,
162
+ "learning_rate": 2.1000000000000002e-05,
163
+ "loss": 1.2654,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.06182795698924731,
168
+ "grad_norm": 0.6304908028391322,
169
+ "learning_rate": 2.2000000000000003e-05,
170
+ "loss": 1.2413,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.06451612903225806,
175
+ "grad_norm": 0.5377853121890415,
176
+ "learning_rate": 2.3e-05,
177
+ "loss": 1.2109,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.06720430107526881,
182
+ "grad_norm": 0.4970873703549533,
183
+ "learning_rate": 2.4e-05,
184
+ "loss": 1.1359,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.06989247311827956,
189
+ "grad_norm": 0.5292734885521813,
190
+ "learning_rate": 2.5e-05,
191
+ "loss": 1.2236,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.07258064516129033,
196
+ "grad_norm": 0.5428754620149544,
197
+ "learning_rate": 2.6000000000000002e-05,
198
+ "loss": 1.2083,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.07526881720430108,
203
+ "grad_norm": 0.5711123503896314,
204
+ "learning_rate": 2.7000000000000002e-05,
205
+ "loss": 1.2161,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.07795698924731183,
210
+ "grad_norm": 0.49149041488377043,
211
+ "learning_rate": 2.8e-05,
212
+ "loss": 1.1454,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.08064516129032258,
217
+ "grad_norm": 0.5285852530799724,
218
+ "learning_rate": 2.9e-05,
219
+ "loss": 1.1194,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.08333333333333333,
224
+ "grad_norm": 0.5295555329242986,
225
+ "learning_rate": 3.0000000000000004e-05,
226
+ "loss": 1.1688,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.08602150537634409,
231
+ "grad_norm": 0.465354706566009,
232
+ "learning_rate": 3.1e-05,
233
+ "loss": 1.1743,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.08870967741935484,
238
+ "grad_norm": 0.4486072933924605,
239
+ "learning_rate": 3.2000000000000005e-05,
240
+ "loss": 1.0818,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.0913978494623656,
245
+ "grad_norm": 0.496727888984662,
246
+ "learning_rate": 3.3e-05,
247
+ "loss": 1.2101,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.09408602150537634,
252
+ "grad_norm": 0.43899748210993167,
253
+ "learning_rate": 3.4e-05,
254
+ "loss": 1.1884,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.0967741935483871,
259
+ "grad_norm": 0.4147227405541853,
260
+ "learning_rate": 3.5000000000000004e-05,
261
+ "loss": 1.0814,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.09946236559139784,
266
+ "grad_norm": 0.48760701758721925,
267
+ "learning_rate": 3.6e-05,
268
+ "loss": 1.1212,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.10215053763440861,
273
+ "grad_norm": 0.49917378567432974,
274
+ "learning_rate": 3.7000000000000005e-05,
275
+ "loss": 1.1984,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.10483870967741936,
280
+ "grad_norm": 0.5304015628409972,
281
+ "learning_rate": 3.8e-05,
282
+ "loss": 1.1274,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.10752688172043011,
287
+ "grad_norm": 0.4726408598975661,
288
+ "learning_rate": 3.9e-05,
289
+ "loss": 1.1323,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.11021505376344086,
294
+ "grad_norm": 0.44174146995469904,
295
+ "learning_rate": 4e-05,
296
+ "loss": 1.1898,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.11290322580645161,
301
+ "grad_norm": 0.5087279682773094,
302
+ "learning_rate": 3.999980086219931e-05,
303
+ "loss": 1.1469,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.11559139784946236,
308
+ "grad_norm": 0.5626510931079601,
309
+ "learning_rate": 3.999920345276283e-05,
310
+ "loss": 1.1321,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.11827956989247312,
315
+ "grad_norm": 0.47565220090788773,
316
+ "learning_rate": 3.999820778358724e-05,
317
+ "loss": 1.1453,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.12096774193548387,
322
+ "grad_norm": 0.4431044005508681,
323
+ "learning_rate": 3.999681387450007e-05,
324
+ "loss": 1.1408,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.12365591397849462,
329
+ "grad_norm": 0.47942624390584926,
330
+ "learning_rate": 3.999502175325932e-05,
331
+ "loss": 1.168,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.12634408602150538,
336
+ "grad_norm": 0.43166434321061714,
337
+ "learning_rate": 3.999283145555291e-05,
338
+ "loss": 1.1087,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.12903225806451613,
343
+ "grad_norm": 0.47105749411720044,
344
+ "learning_rate": 3.999024302499794e-05,
345
+ "loss": 1.0752,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.13172043010752688,
350
+ "grad_norm": 0.3959072081415341,
351
+ "learning_rate": 3.998725651313984e-05,
352
+ "loss": 1.1011,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.13440860215053763,
357
+ "grad_norm": 0.4416535692834609,
358
+ "learning_rate": 3.998387197945135e-05,
359
+ "loss": 1.1306,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.13709677419354838,
364
+ "grad_norm": 0.4272647809985287,
365
+ "learning_rate": 3.9980089491331344e-05,
366
+ "loss": 1.1381,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.13978494623655913,
371
+ "grad_norm": 0.47769854993592265,
372
+ "learning_rate": 3.997590912410345e-05,
373
+ "loss": 1.0976,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.1424731182795699,
378
+ "grad_norm": 0.3877500456630632,
379
+ "learning_rate": 3.997133096101458e-05,
380
+ "loss": 1.128,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.14516129032258066,
385
+ "grad_norm": 0.3869721085588235,
386
+ "learning_rate": 3.996635509323327e-05,
387
+ "loss": 1.1225,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.1478494623655914,
392
+ "grad_norm": 0.47271590281090886,
393
+ "learning_rate": 3.9960981619847856e-05,
394
+ "loss": 1.1141,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.15053763440860216,
399
+ "grad_norm": 0.4368206211090345,
400
+ "learning_rate": 3.99552106478645e-05,
401
+ "loss": 1.0872,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.1532258064516129,
406
+ "grad_norm": 0.3872679475185707,
407
+ "learning_rate": 3.994904229220507e-05,
408
+ "loss": 1.1514,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.15591397849462366,
413
+ "grad_norm": 0.406268890860899,
414
+ "learning_rate": 3.9942476675704854e-05,
415
+ "loss": 1.0965,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.1586021505376344,
420
+ "grad_norm": 0.43172418498531184,
421
+ "learning_rate": 3.993551392911009e-05,
422
+ "loss": 1.1192,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.16129032258064516,
427
+ "grad_norm": 0.4258357918752704,
428
+ "learning_rate": 3.9928154191075375e-05,
429
+ "loss": 1.0623,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.1639784946236559,
434
+ "grad_norm": 0.4585556740184179,
435
+ "learning_rate": 3.9920397608160925e-05,
436
+ "loss": 1.1076,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.16666666666666666,
441
+ "grad_norm": 0.44452627464263844,
442
+ "learning_rate": 3.991224433482961e-05,
443
+ "loss": 1.1107,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.1693548387096774,
448
+ "grad_norm": 0.4787003491624029,
449
+ "learning_rate": 3.990369453344394e-05,
450
+ "loss": 1.1165,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.17204301075268819,
455
+ "grad_norm": 0.4704549745433953,
456
+ "learning_rate": 3.989474837426277e-05,
457
+ "loss": 1.1541,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.17473118279569894,
462
+ "grad_norm": 0.4026214434021435,
463
+ "learning_rate": 3.9885406035437953e-05,
464
+ "loss": 1.1166,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.1774193548387097,
469
+ "grad_norm": 0.40057979364796353,
470
+ "learning_rate": 3.987566770301076e-05,
471
+ "loss": 1.0626,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.18010752688172044,
476
+ "grad_norm": 0.4340486368362563,
477
+ "learning_rate": 3.98655335709082e-05,
478
+ "loss": 1.104,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.1827956989247312,
483
+ "grad_norm": 0.42609639195543936,
484
+ "learning_rate": 3.985500384093917e-05,
485
+ "loss": 1.0893,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.18548387096774194,
490
+ "grad_norm": 0.381378569874383,
491
+ "learning_rate": 3.984407872279037e-05,
492
+ "loss": 1.0433,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.1881720430107527,
497
+ "grad_norm": 0.3903976348529897,
498
+ "learning_rate": 3.983275843402222e-05,
499
+ "loss": 1.1019,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.19086021505376344,
504
+ "grad_norm": 0.3648695348221521,
505
+ "learning_rate": 3.982104320006446e-05,
506
+ "loss": 1.0992,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.1935483870967742,
511
+ "grad_norm": 1.8993059639660952,
512
+ "learning_rate": 3.9808933254211665e-05,
513
+ "loss": 1.1056,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.19623655913978494,
518
+ "grad_norm": 0.46580843289168206,
519
+ "learning_rate": 3.979642883761866e-05,
520
+ "loss": 1.1031,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.1989247311827957,
525
+ "grad_norm": 0.449285515287558,
526
+ "learning_rate": 3.978353019929562e-05,
527
+ "loss": 1.1068,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.20161290322580644,
532
+ "grad_norm": 0.5567418056951845,
533
+ "learning_rate": 3.977023759610321e-05,
534
+ "loss": 1.0446,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.20430107526881722,
539
+ "grad_norm": 0.38684392317210076,
540
+ "learning_rate": 3.9756551292747405e-05,
541
+ "loss": 1.0377,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.20698924731182797,
546
+ "grad_norm": 0.473773440244898,
547
+ "learning_rate": 3.974247156177423e-05,
548
+ "loss": 1.1396,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.20967741935483872,
553
+ "grad_norm": 0.4177520757238314,
554
+ "learning_rate": 3.9727998683564355e-05,
555
+ "loss": 1.1008,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.21236559139784947,
560
+ "grad_norm": 0.39719194878309766,
561
+ "learning_rate": 3.9713132946327494e-05,
562
+ "loss": 1.0215,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.21505376344086022,
567
+ "grad_norm": 0.4105085260167095,
568
+ "learning_rate": 3.9697874646096675e-05,
569
+ "loss": 1.1115,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.21774193548387097,
574
+ "grad_norm": 0.4087045401288919,
575
+ "learning_rate": 3.968222408672232e-05,
576
+ "loss": 1.0579,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.22043010752688172,
581
+ "grad_norm": 0.39033402258475636,
582
+ "learning_rate": 3.9666181579866244e-05,
583
+ "loss": 1.0692,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.22311827956989247,
588
+ "grad_norm": 0.41439706526743936,
589
+ "learning_rate": 3.964974744499539e-05,
590
+ "loss": 1.0865,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.22580645161290322,
595
+ "grad_norm": 0.38234297411695073,
596
+ "learning_rate": 3.963292200937551e-05,
597
+ "loss": 1.0173,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.22849462365591397,
602
+ "grad_norm": 0.5308750280660687,
603
+ "learning_rate": 3.961570560806461e-05,
604
+ "loss": 1.067,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.23118279569892472,
609
+ "grad_norm": 0.43351295582441124,
610
+ "learning_rate": 3.959809858390634e-05,
611
+ "loss": 1.086,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.23387096774193547,
616
+ "grad_norm": 0.42069712201952686,
617
+ "learning_rate": 3.9580101287523105e-05,
618
+ "loss": 1.1064,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.23655913978494625,
623
+ "grad_norm": 0.42821523209412365,
624
+ "learning_rate": 3.95617140773091e-05,
625
+ "loss": 1.0263,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.239247311827957,
630
+ "grad_norm": 0.4114502165683399,
631
+ "learning_rate": 3.954293731942319e-05,
632
+ "loss": 1.0729,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.24193548387096775,
637
+ "grad_norm": 0.4131919780645225,
638
+ "learning_rate": 3.95237713877816e-05,
639
+ "loss": 1.0621,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.2446236559139785,
644
+ "grad_norm": 0.4433939594965718,
645
+ "learning_rate": 3.950421666405048e-05,
646
+ "loss": 1.0805,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.24731182795698925,
651
+ "grad_norm": 0.4056188018789589,
652
+ "learning_rate": 3.948427353763829e-05,
653
+ "loss": 1.0784,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.25,
658
+ "grad_norm": 0.4642044159391645,
659
+ "learning_rate": 3.946394240568807e-05,
660
+ "loss": 1.0406,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.25268817204301075,
665
+ "grad_norm": 0.4280982724994961,
666
+ "learning_rate": 3.944322367306951e-05,
667
+ "loss": 1.1117,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.2553763440860215,
672
+ "grad_norm": 0.41758547723414086,
673
+ "learning_rate": 3.942211775237089e-05,
674
+ "loss": 1.0747,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.25806451612903225,
679
+ "grad_norm": 0.4344009299837567,
680
+ "learning_rate": 3.940062506389089e-05,
681
+ "loss": 1.1249,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.260752688172043,
686
+ "grad_norm": 0.3847297194838658,
687
+ "learning_rate": 3.937874603563015e-05,
688
+ "loss": 1.0977,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.26344086021505375,
693
+ "grad_norm": 0.4959083398122344,
694
+ "learning_rate": 3.935648110328285e-05,
695
+ "loss": 1.041,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.2661290322580645,
700
+ "grad_norm": 0.46262720954521647,
701
+ "learning_rate": 3.933383071022795e-05,
702
+ "loss": 1.0926,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.26881720430107525,
707
+ "grad_norm": 0.4789561041937064,
708
+ "learning_rate": 3.93107953075204e-05,
709
+ "loss": 1.0701,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.271505376344086,
714
+ "grad_norm": 0.4229869803365367,
715
+ "learning_rate": 3.928737535388214e-05,
716
+ "loss": 1.063,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.27419354838709675,
721
+ "grad_norm": 0.43404703473814416,
722
+ "learning_rate": 3.9263571315692976e-05,
723
+ "loss": 1.0696,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.2768817204301075,
728
+ "grad_norm": 0.4396716028324381,
729
+ "learning_rate": 3.923938366698129e-05,
730
+ "loss": 1.0317,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.27956989247311825,
735
+ "grad_norm": 0.6860340156482403,
736
+ "learning_rate": 3.921481288941459e-05,
737
+ "loss": 1.0611,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.28225806451612906,
742
+ "grad_norm": 0.39601683185098385,
743
+ "learning_rate": 3.9189859472289956e-05,
744
+ "loss": 1.0294,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.2849462365591398,
749
+ "grad_norm": 0.39641986440862376,
750
+ "learning_rate": 3.9164523912524224e-05,
751
+ "loss": 1.0663,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.28763440860215056,
756
+ "grad_norm": 0.3898209322812333,
757
+ "learning_rate": 3.913880671464418e-05,
758
+ "loss": 1.0671,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.2903225806451613,
763
+ "grad_norm": 0.408678962590762,
764
+ "learning_rate": 3.911270839077644e-05,
765
+ "loss": 1.0224,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.29301075268817206,
770
+ "grad_norm": 0.4681397312637908,
771
+ "learning_rate": 3.908622946063728e-05,
772
+ "loss": 1.091,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.2956989247311828,
777
+ "grad_norm": 0.47955178042664964,
778
+ "learning_rate": 3.9059370451522295e-05,
779
+ "loss": 1.0961,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.29838709677419356,
784
+ "grad_norm": 0.4229760577312693,
785
+ "learning_rate": 3.903213189829589e-05,
786
+ "loss": 1.0386,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.3010752688172043,
791
+ "grad_norm": 0.39011319960684926,
792
+ "learning_rate": 3.900451434338062e-05,
793
+ "loss": 1.067,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.30376344086021506,
798
+ "grad_norm": 0.39672904488910227,
799
+ "learning_rate": 3.8976518336746396e-05,
800
+ "loss": 1.0424,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.3064516129032258,
805
+ "grad_norm": 0.49393594827425025,
806
+ "learning_rate": 3.894814443589954e-05,
807
+ "loss": 1.0695,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.30913978494623656,
812
+ "grad_norm": 0.38254416729289076,
813
+ "learning_rate": 3.8919393205871676e-05,
814
+ "loss": 1.0801,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.3118279569892473,
819
+ "grad_norm": 0.4456422459103533,
820
+ "learning_rate": 3.889026521920847e-05,
821
+ "loss": 1.0934,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.31451612903225806,
826
+ "grad_norm": 0.39398196216047476,
827
+ "learning_rate": 3.886076105595825e-05,
828
+ "loss": 1.1011,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.3172043010752688,
833
+ "grad_norm": 0.3949327527665007,
834
+ "learning_rate": 3.883088130366042e-05,
835
+ "loss": 1.018,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.31989247311827956,
840
+ "grad_norm": 0.39254792724729387,
841
+ "learning_rate": 3.88006265573338e-05,
842
+ "loss": 1.0607,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.3225806451612903,
847
+ "grad_norm": 0.5007199853312655,
848
+ "learning_rate": 3.876999741946478e-05,
849
+ "loss": 1.0609,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.32526881720430106,
854
+ "grad_norm": 0.4619751408736227,
855
+ "learning_rate": 3.873899449999524e-05,
856
+ "loss": 1.0955,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.3279569892473118,
861
+ "grad_norm": 0.48219172224114765,
862
+ "learning_rate": 3.870761841631051e-05,
863
+ "loss": 1.063,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.33064516129032256,
868
+ "grad_norm": 0.4054037874416271,
869
+ "learning_rate": 3.867586979322703e-05,
870
+ "loss": 1.0907,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.3333333333333333,
875
+ "grad_norm": 0.43161457507331874,
876
+ "learning_rate": 3.8643749262979896e-05,
877
+ "loss": 1.0666,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.33602150537634407,
882
+ "grad_norm": 0.36751029685084174,
883
+ "learning_rate": 3.861125746521028e-05,
884
+ "loss": 1.0557,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.3387096774193548,
889
+ "grad_norm": 0.46690938120869707,
890
+ "learning_rate": 3.8578395046952686e-05,
891
+ "loss": 1.1023,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.34139784946236557,
896
+ "grad_norm": 0.3988094995343537,
897
+ "learning_rate": 3.85451626626221e-05,
898
+ "loss": 1.0717,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.34408602150537637,
903
+ "grad_norm": 0.48432619617982536,
904
+ "learning_rate": 3.85115609740009e-05,
905
+ "loss": 1.0271,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.3467741935483871,
910
+ "grad_norm": 0.5127948499632843,
911
+ "learning_rate": 3.8477590650225735e-05,
912
+ "loss": 1.0575,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.34946236559139787,
917
+ "grad_norm": 0.4132091412639387,
918
+ "learning_rate": 3.8443252367774164e-05,
919
+ "loss": 1.0355,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.3521505376344086,
924
+ "grad_norm": 0.4439631972175399,
925
+ "learning_rate": 3.8408546810451176e-05,
926
+ "loss": 1.0541,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.3548387096774194,
931
+ "grad_norm": 0.3956247259769062,
932
+ "learning_rate": 3.837347466937562e-05,
933
+ "loss": 1.0672,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.3575268817204301,
938
+ "grad_norm": 0.44952249373265674,
939
+ "learning_rate": 3.8338036642966396e-05,
940
+ "loss": 1.0444,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.3602150537634409,
945
+ "grad_norm": 0.4449484078947791,
946
+ "learning_rate": 3.830223343692857e-05,
947
+ "loss": 1.0514,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.3629032258064516,
952
+ "grad_norm": 0.3905509358873801,
953
+ "learning_rate": 3.826606576423931e-05,
954
+ "loss": 1.0394,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.3655913978494624,
959
+ "grad_norm": 0.4183744146790331,
960
+ "learning_rate": 3.8229534345133695e-05,
961
+ "loss": 1.0212,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.3682795698924731,
966
+ "grad_norm": 0.46086732418604737,
967
+ "learning_rate": 3.819263990709037e-05,
968
+ "loss": 0.994,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.3709677419354839,
973
+ "grad_norm": 0.4468564375555911,
974
+ "learning_rate": 3.8155383184817064e-05,
975
+ "loss": 1.0279,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.3736559139784946,
980
+ "grad_norm": 0.3966511312736679,
981
+ "learning_rate": 3.8117764920235945e-05,
982
+ "loss": 0.9992,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.3763440860215054,
987
+ "grad_norm": 0.46461846433833476,
988
+ "learning_rate": 3.807978586246887e-05,
989
+ "loss": 1.088,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.3790322580645161,
994
+ "grad_norm": 0.4254641795470929,
995
+ "learning_rate": 3.804144676782243e-05,
996
+ "loss": 1.0764,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.3817204301075269,
1001
+ "grad_norm": 0.42137203485219293,
1002
+ "learning_rate": 3.800274839977293e-05,
1003
+ "loss": 1.0422,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.3844086021505376,
1008
+ "grad_norm": 0.4172681789743796,
1009
+ "learning_rate": 3.796369152895117e-05,
1010
+ "loss": 1.0453,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.3870967741935484,
1015
+ "grad_norm": 0.4531431509751161,
1016
+ "learning_rate": 3.792427693312707e-05,
1017
+ "loss": 1.0389,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.3897849462365591,
1022
+ "grad_norm": 0.3782466419505299,
1023
+ "learning_rate": 3.788450539719423e-05,
1024
+ "loss": 1.025,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.3924731182795699,
1029
+ "grad_norm": 0.4655605897605627,
1030
+ "learning_rate": 3.7844377713154264e-05,
1031
+ "loss": 1.064,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.3951612903225806,
1036
+ "grad_norm": 0.4384836890227208,
1037
+ "learning_rate": 3.780389468010106e-05,
1038
+ "loss": 1.0397,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.3978494623655914,
1043
+ "grad_norm": 0.4844715439450037,
1044
+ "learning_rate": 3.776305710420482e-05,
1045
+ "loss": 1.1193,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.40053763440860213,
1050
+ "grad_norm": 0.41760675460607827,
1051
+ "learning_rate": 3.7721865798696056e-05,
1052
+ "loss": 1.0124,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.4032258064516129,
1057
+ "grad_norm": 0.7337537478769387,
1058
+ "learning_rate": 3.7680321583849365e-05,
1059
+ "loss": 1.0508,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.40591397849462363,
1064
+ "grad_norm": 0.44725816367920673,
1065
+ "learning_rate": 3.76384252869671e-05,
1066
+ "loss": 1.0434,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.40860215053763443,
1071
+ "grad_norm": 0.40870612635720194,
1072
+ "learning_rate": 3.759617774236292e-05,
1073
+ "loss": 1.068,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.4112903225806452,
1078
+ "grad_norm": 0.4534649483932217,
1079
+ "learning_rate": 3.755357979134511e-05,
1080
+ "loss": 1.0614,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.41397849462365593,
1085
+ "grad_norm": 0.41986572053185917,
1086
+ "learning_rate": 3.751063228219993e-05,
1087
+ "loss": 1.0391,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.4166666666666667,
1092
+ "grad_norm": 0.3717380879536067,
1093
+ "learning_rate": 3.7467336070174604e-05,
1094
+ "loss": 1.0378,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.41935483870967744,
1099
+ "grad_norm": 0.41848537015206944,
1100
+ "learning_rate": 3.742369201746038e-05,
1101
+ "loss": 1.0439,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.4220430107526882,
1106
+ "grad_norm": 0.43443932018052933,
1107
+ "learning_rate": 3.737970099317535e-05,
1108
+ "loss": 1.0197,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.42473118279569894,
1113
+ "grad_norm": 0.421554546653683,
1114
+ "learning_rate": 3.7335363873347056e-05,
1115
+ "loss": 1.0487,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.4274193548387097,
1120
+ "grad_norm": 0.8430023271255561,
1121
+ "learning_rate": 3.729068154089519e-05,
1122
+ "loss": 1.0333,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.43010752688172044,
1127
+ "grad_norm": 0.4363044724173691,
1128
+ "learning_rate": 3.724565488561387e-05,
1129
+ "loss": 1.0213,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.4327956989247312,
1134
+ "grad_norm": 0.5335682969510431,
1135
+ "learning_rate": 3.720028480415401e-05,
1136
+ "loss": 1.0205,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.43548387096774194,
1141
+ "grad_norm": 0.4056834135687678,
1142
+ "learning_rate": 3.7154572200005446e-05,
1143
+ "loss": 1.0311,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.4381720430107527,
1148
+ "grad_norm": 0.5322107401886871,
1149
+ "learning_rate": 3.710851798347891e-05,
1150
+ "loss": 1.0601,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.44086021505376344,
1155
+ "grad_norm": 0.4138677278304246,
1156
+ "learning_rate": 3.7062123071687944e-05,
1157
+ "loss": 1.0361,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.4435483870967742,
1162
+ "grad_norm": 0.4775100325512625,
1163
+ "learning_rate": 3.701538838853062e-05,
1164
+ "loss": 1.0194,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.44623655913978494,
1169
+ "grad_norm": 0.40839482534046995,
1170
+ "learning_rate": 3.696831486467114e-05,
1171
+ "loss": 1.0463,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.4489247311827957,
1176
+ "grad_norm": 0.3963093446633738,
1177
+ "learning_rate": 3.6920903437521305e-05,
1178
+ "loss": 1.0238,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.45161290322580644,
1183
+ "grad_norm": 0.4344752184390704,
1184
+ "learning_rate": 3.6873155051221846e-05,
1185
+ "loss": 1.0472,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.4543010752688172,
1190
+ "grad_norm": 0.4167014186949368,
1191
+ "learning_rate": 3.6825070656623626e-05,
1192
+ "loss": 1.0599,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.45698924731182794,
1197
+ "grad_norm": 0.43904590007956124,
1198
+ "learning_rate": 3.677665121126871e-05,
1199
+ "loss": 1.0559,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.4596774193548387,
1204
+ "grad_norm": 0.372185063148541,
1205
+ "learning_rate": 3.6727897679371276e-05,
1206
+ "loss": 1.0012,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.46236559139784944,
1211
+ "grad_norm": 0.43086731351488916,
1212
+ "learning_rate": 3.667881103179844e-05,
1213
+ "loss": 1.0133,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.4650537634408602,
1218
+ "grad_norm": 0.5796354347464544,
1219
+ "learning_rate": 3.662939224605091e-05,
1220
+ "loss": 1.0517,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.46774193548387094,
1225
+ "grad_norm": 0.4587453684541154,
1226
+ "learning_rate": 3.657964230624351e-05,
1227
+ "loss": 1.0164,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.47043010752688175,
1232
+ "grad_norm": 0.5102852182866393,
1233
+ "learning_rate": 3.6529562203085595e-05,
1234
+ "loss": 1.052,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.4731182795698925,
1239
+ "grad_norm": 0.4469591346380821,
1240
+ "learning_rate": 3.6479152933861336e-05,
1241
+ "loss": 1.0905,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.47580645161290325,
1246
+ "grad_norm": 0.45277428352010624,
1247
+ "learning_rate": 3.642841550240983e-05,
1248
+ "loss": 1.0961,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.478494623655914,
1253
+ "grad_norm": 0.45588595960031525,
1254
+ "learning_rate": 3.6377350919105136e-05,
1255
+ "loss": 1.0178,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.48118279569892475,
1260
+ "grad_norm": 0.6147997034643559,
1261
+ "learning_rate": 3.632596020083612e-05,
1262
+ "loss": 1.0148,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.4838709677419355,
1267
+ "grad_norm": 0.3734326271789308,
1268
+ "learning_rate": 3.627424437098625e-05,
1269
+ "loss": 1.0006,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.48655913978494625,
1274
+ "grad_norm": 0.4564187594173089,
1275
+ "learning_rate": 3.6222204459413186e-05,
1276
+ "loss": 1.0635,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.489247311827957,
1281
+ "grad_norm": 0.42811733614493086,
1282
+ "learning_rate": 3.6169841502428285e-05,
1283
+ "loss": 1.0469,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.49193548387096775,
1288
+ "grad_norm": 0.4227875509642681,
1289
+ "learning_rate": 3.611715654277596e-05,
1290
+ "loss": 1.0446,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.4946236559139785,
1295
+ "grad_norm": 0.40548546169007965,
1296
+ "learning_rate": 3.60641506296129e-05,
1297
+ "loss": 1.0564,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.49731182795698925,
1302
+ "grad_norm": 0.4161116484325749,
1303
+ "learning_rate": 3.601082481848721e-05,
1304
+ "loss": 0.9917,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.5,
1309
+ "grad_norm": 0.39180067540636987,
1310
+ "learning_rate": 3.595718017131736e-05,
1311
+ "loss": 1.0081,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.5026881720430108,
1316
+ "grad_norm": 0.5307122561583237,
1317
+ "learning_rate": 3.5903217756371066e-05,
1318
+ "loss": 0.9972,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.5053763440860215,
1323
+ "grad_norm": 0.4633315164676552,
1324
+ "learning_rate": 3.5848938648243976e-05,
1325
+ "loss": 1.0196,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.5080645161290323,
1330
+ "grad_norm": 0.43457272116367207,
1331
+ "learning_rate": 3.579434392783832e-05,
1332
+ "loss": 1.0429,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.510752688172043,
1337
+ "grad_norm": 0.42602042879132207,
1338
+ "learning_rate": 3.5739434682341355e-05,
1339
+ "loss": 1.0355,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.5134408602150538,
1344
+ "grad_norm": 0.37328410492227004,
1345
+ "learning_rate": 3.568421200520371e-05,
1346
+ "loss": 1.0158,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.5161290322580645,
1351
+ "grad_norm": 0.47901349260363574,
1352
+ "learning_rate": 3.562867699611764e-05,
1353
+ "loss": 1.006,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.5188172043010753,
1358
+ "grad_norm": 0.6800894155552869,
1359
+ "learning_rate": 3.55728307609951e-05,
1360
+ "loss": 1.0819,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.521505376344086,
1365
+ "grad_norm": 0.6815573295093794,
1366
+ "learning_rate": 3.5516674411945747e-05,
1367
+ "loss": 0.9767,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.5241935483870968,
1372
+ "grad_norm": 0.40923877696875666,
1373
+ "learning_rate": 3.546020906725474e-05,
1374
+ "loss": 1.0048,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.5268817204301075,
1379
+ "grad_norm": 0.39166638466881304,
1380
+ "learning_rate": 3.540343585136056e-05,
1381
+ "loss": 1.0115,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.5295698924731183,
1386
+ "grad_norm": 0.46039879078749524,
1387
+ "learning_rate": 3.5346355894832515e-05,
1388
+ "loss": 1.0274,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.532258064516129,
1393
+ "grad_norm": 0.435003701062386,
1394
+ "learning_rate": 3.5288970334348324e-05,
1395
+ "loss": 1.0262,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.5349462365591398,
1400
+ "grad_norm": 0.46422099557675184,
1401
+ "learning_rate": 3.5231280312671426e-05,
1402
+ "loss": 1.0406,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.5376344086021505,
1407
+ "grad_norm": 0.3946242892533647,
1408
+ "learning_rate": 3.51732869786282e-05,
1409
+ "loss": 1.0351,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.5403225806451613,
1414
+ "grad_norm": 0.4593963303455073,
1415
+ "learning_rate": 3.511499148708517e-05,
1416
+ "loss": 1.0161,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.543010752688172,
1421
+ "grad_norm": 0.43211273427185715,
1422
+ "learning_rate": 3.505639499892591e-05,
1423
+ "loss": 1.0339,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.5456989247311828,
1428
+ "grad_norm": 0.4638011311631454,
1429
+ "learning_rate": 3.499749868102802e-05,
1430
+ "loss": 1.0195,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.5483870967741935,
1435
+ "grad_norm": 0.4606785516075864,
1436
+ "learning_rate": 3.4938303706239814e-05,
1437
+ "loss": 1.0809,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.5510752688172043,
1442
+ "grad_norm": 0.4750835163830621,
1443
+ "learning_rate": 3.487881125335699e-05,
1444
+ "loss": 1.0104,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.553763440860215,
1449
+ "grad_norm": 0.48069623342657913,
1450
+ "learning_rate": 3.4819022507099184e-05,
1451
+ "loss": 1.0534,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.5564516129032258,
1456
+ "grad_norm": 0.4485052357605267,
1457
+ "learning_rate": 3.475893865808633e-05,
1458
+ "loss": 1.008,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.5591397849462365,
1463
+ "grad_norm": 0.45226568470539963,
1464
+ "learning_rate": 3.4698560902815e-05,
1465
+ "loss": 0.9859,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.5618279569892473,
1470
+ "grad_norm": 0.4556713744237398,
1471
+ "learning_rate": 3.463789044363451e-05,
1472
+ "loss": 1.0468,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.5645161290322581,
1477
+ "grad_norm": 0.40515419542450315,
1478
+ "learning_rate": 3.4576928488723056e-05,
1479
+ "loss": 1.0069,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.5672043010752689,
1484
+ "grad_norm": 0.407850239298829,
1485
+ "learning_rate": 3.4515676252063595e-05,
1486
+ "loss": 1.024,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.5698924731182796,
1491
+ "grad_norm": 0.4245125668059516,
1492
+ "learning_rate": 3.445413495341971e-05,
1493
+ "loss": 0.9842,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.5725806451612904,
1498
+ "grad_norm": 0.5282266357639802,
1499
+ "learning_rate": 3.439230581831126e-05,
1500
+ "loss": 1.0511,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.5752688172043011,
1505
+ "grad_norm": 0.46721556238008377,
1506
+ "learning_rate": 3.433019007799007e-05,
1507
+ "loss": 1.0722,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.5779569892473119,
1512
+ "grad_norm": 0.3998174935596331,
1513
+ "learning_rate": 3.4267788969415315e-05,
1514
+ "loss": 1.0417,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.5806451612903226,
1519
+ "grad_norm": 0.39836497217157424,
1520
+ "learning_rate": 3.420510373522896e-05,
1521
+ "loss": 0.9522,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.5833333333333334,
1526
+ "grad_norm": 0.5604060165845736,
1527
+ "learning_rate": 3.4142135623730954e-05,
1528
+ "loss": 1.0406,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.5860215053763441,
1533
+ "grad_norm": 0.4626752931850209,
1534
+ "learning_rate": 3.4078885888854436e-05,
1535
+ "loss": 1.0403,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.5887096774193549,
1540
+ "grad_norm": 0.4119865874583256,
1541
+ "learning_rate": 3.4015355790140715e-05,
1542
+ "loss": 0.974,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.5913978494623656,
1547
+ "grad_norm": 0.41688760669607,
1548
+ "learning_rate": 3.39515465927142e-05,
1549
+ "loss": 1.0354,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.5940860215053764,
1554
+ "grad_norm": 0.47263736408876167,
1555
+ "learning_rate": 3.388745956725722e-05,
1556
+ "loss": 1.0438,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.5967741935483871,
1561
+ "grad_norm": 0.48712838990373963,
1562
+ "learning_rate": 3.3823095989984697e-05,
1563
+ "loss": 0.9847,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.5994623655913979,
1568
+ "grad_norm": 0.39317905049275836,
1569
+ "learning_rate": 3.3758457142618754e-05,
1570
+ "loss": 0.9806,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.6021505376344086,
1575
+ "grad_norm": 0.484001386994586,
1576
+ "learning_rate": 3.369354431236319e-05,
1577
+ "loss": 1.0003,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.6048387096774194,
1582
+ "grad_norm": 0.3896751020684252,
1583
+ "learning_rate": 3.362835879187783e-05,
1584
+ "loss": 0.9314,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.6075268817204301,
1589
+ "grad_norm": 0.402131340210077,
1590
+ "learning_rate": 3.356290187925278e-05,
1591
+ "loss": 0.957,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.6102150537634409,
1596
+ "grad_norm": 0.4442069284277535,
1597
+ "learning_rate": 3.349717487798261e-05,
1598
+ "loss": 1.0651,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.6129032258064516,
1603
+ "grad_norm": 0.4075067959077034,
1604
+ "learning_rate": 3.3431179096940375e-05,
1605
+ "loss": 1.0117,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.6155913978494624,
1610
+ "grad_norm": 0.4595977891340027,
1611
+ "learning_rate": 3.3364915850351525e-05,
1612
+ "loss": 1.0277,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.6182795698924731,
1617
+ "grad_norm": 0.41565240224286376,
1618
+ "learning_rate": 3.3298386457767804e-05,
1619
+ "loss": 0.9873,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.6209677419354839,
1624
+ "grad_norm": 0.400290934516727,
1625
+ "learning_rate": 3.3231592244040885e-05,
1626
+ "loss": 1.0503,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.6236559139784946,
1631
+ "grad_norm": 0.43593503744528256,
1632
+ "learning_rate": 3.3164534539296056e-05,
1633
+ "loss": 1.0256,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.6263440860215054,
1638
+ "grad_norm": 0.4297576409774745,
1639
+ "learning_rate": 3.309721467890571e-05,
1640
+ "loss": 0.9873,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.6290322580645161,
1645
+ "grad_norm": 0.5286155107560961,
1646
+ "learning_rate": 3.302963400346272e-05,
1647
+ "loss": 1.0526,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.6317204301075269,
1652
+ "grad_norm": 0.4080215430723157,
1653
+ "learning_rate": 3.296179385875381e-05,
1654
+ "loss": 0.993,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.6344086021505376,
1659
+ "grad_norm": 0.4666697414536282,
1660
+ "learning_rate": 3.2893695595732705e-05,
1661
+ "loss": 0.9855,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.6370967741935484,
1666
+ "grad_norm": 0.44576593027115785,
1667
+ "learning_rate": 3.282534057049322e-05,
1668
+ "loss": 0.994,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.6397849462365591,
1673
+ "grad_norm": 0.45875921319019286,
1674
+ "learning_rate": 3.275673014424231e-05,
1675
+ "loss": 1.0695,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.6424731182795699,
1680
+ "grad_norm": 0.4483391985101821,
1681
+ "learning_rate": 3.268786568327291e-05,
1682
+ "loss": 1.0413,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.6451612903225806,
1687
+ "grad_norm": 0.3823024947210084,
1688
+ "learning_rate": 3.261874855893675e-05,
1689
+ "loss": 1.0634,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.6478494623655914,
1694
+ "grad_norm": 0.42590418591004187,
1695
+ "learning_rate": 3.254938014761704e-05,
1696
+ "loss": 1.1039,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.6505376344086021,
1701
+ "grad_norm": 0.4436207874701427,
1702
+ "learning_rate": 3.2479761830701075e-05,
1703
+ "loss": 1.0797,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.6532258064516129,
1708
+ "grad_norm": 0.5436242022516592,
1709
+ "learning_rate": 3.240989499455269e-05,
1710
+ "loss": 0.998,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.6559139784946236,
1715
+ "grad_norm": 0.42461660808494955,
1716
+ "learning_rate": 3.2339781030484715e-05,
1717
+ "loss": 1.0014,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.6586021505376344,
1722
+ "grad_norm": 0.4147658974390641,
1723
+ "learning_rate": 3.2269421334731196e-05,
1724
+ "loss": 1.0047,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.6612903225806451,
1729
+ "grad_norm": 0.3702000902999608,
1730
+ "learning_rate": 3.219881730841964e-05,
1731
+ "loss": 1.0057,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.6639784946236559,
1736
+ "grad_norm": 0.37405944820555137,
1737
+ "learning_rate": 3.212797035754311e-05,
1738
+ "loss": 0.9881,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.6666666666666666,
1743
+ "grad_norm": 0.39789221907192235,
1744
+ "learning_rate": 3.205688189293219e-05,
1745
+ "loss": 1.002,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.6693548387096774,
1750
+ "grad_norm": 0.35269099760384387,
1751
+ "learning_rate": 3.198555333022694e-05,
1752
+ "loss": 1.0445,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.6720430107526881,
1757
+ "grad_norm": 0.39171670743365294,
1758
+ "learning_rate": 3.191398608984867e-05,
1759
+ "loss": 0.9873,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.6747311827956989,
1764
+ "grad_norm": 0.36377972714827284,
1765
+ "learning_rate": 3.184218159697166e-05,
1766
+ "loss": 0.9678,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.6774193548387096,
1771
+ "grad_norm": 0.4760701686418637,
1772
+ "learning_rate": 3.177014128149479e-05,
1773
+ "loss": 1.0475,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.6801075268817204,
1778
+ "grad_norm": 0.36306748600915323,
1779
+ "learning_rate": 3.169786657801306e-05,
1780
+ "loss": 0.9737,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.6827956989247311,
1785
+ "grad_norm": 0.36397370143939106,
1786
+ "learning_rate": 3.162535892578903e-05,
1787
+ "loss": 1.0009,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.6854838709677419,
1792
+ "grad_norm": 0.41923544253489314,
1793
+ "learning_rate": 3.155261976872412e-05,
1794
+ "loss": 0.9855,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.6881720430107527,
1799
+ "grad_norm": 0.4349008134787599,
1800
+ "learning_rate": 3.147965055532991e-05,
1801
+ "loss": 0.9843,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.6908602150537635,
1806
+ "grad_norm": 0.4403161475473632,
1807
+ "learning_rate": 3.1406452738699284e-05,
1808
+ "loss": 0.9932,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.6935483870967742,
1813
+ "grad_norm": 0.4088632034626185,
1814
+ "learning_rate": 3.1333027776477454e-05,
1815
+ "loss": 1.0175,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.696236559139785,
1820
+ "grad_norm": 0.4089626667866183,
1821
+ "learning_rate": 3.125937713083296e-05,
1822
+ "loss": 0.9957,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.6989247311827957,
1827
+ "grad_norm": 0.44005061948101687,
1828
+ "learning_rate": 3.118550226842857e-05,
1829
+ "loss": 0.9902,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.7016129032258065,
1834
+ "grad_norm": 1.1016022022748841,
1835
+ "learning_rate": 3.111140466039205e-05,
1836
+ "loss": 0.991,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.7043010752688172,
1841
+ "grad_norm": 0.39448956783294353,
1842
+ "learning_rate": 3.103708578228686e-05,
1843
+ "loss": 1.0041,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.706989247311828,
1848
+ "grad_norm": 0.41388488702273174,
1849
+ "learning_rate": 3.0962547114082804e-05,
1850
+ "loss": 0.9928,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.7096774193548387,
1855
+ "grad_norm": 0.4065224464102798,
1856
+ "learning_rate": 3.088779014012652e-05,
1857
+ "loss": 0.9859,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.7123655913978495,
1862
+ "grad_norm": 0.39952347811781436,
1863
+ "learning_rate": 3.0812816349111956e-05,
1864
+ "loss": 0.9613,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.7150537634408602,
1869
+ "grad_norm": 0.43554876713734897,
1870
+ "learning_rate": 3.073762723405069e-05,
1871
+ "loss": 1.0289,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.717741935483871,
1876
+ "grad_norm": 0.469813057633801,
1877
+ "learning_rate": 3.066222429224221e-05,
1878
+ "loss": 1.0438,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.7204301075268817,
1883
+ "grad_norm": 0.4353123605440106,
1884
+ "learning_rate": 3.0586609025244144e-05,
1885
+ "loss": 1.0017,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.7231182795698925,
1890
+ "grad_norm": 0.40010712539262144,
1891
+ "learning_rate": 3.051078293884226e-05,
1892
+ "loss": 1.0254,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.7258064516129032,
1897
+ "grad_norm": 0.41179768187019394,
1898
+ "learning_rate": 3.0434747543020585e-05,
1899
+ "loss": 1.0167,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.728494623655914,
1904
+ "grad_norm": 0.39261397155250993,
1905
+ "learning_rate": 3.0358504351931265e-05,
1906
+ "loss": 0.9987,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.7311827956989247,
1911
+ "grad_norm": 0.4037853365263608,
1912
+ "learning_rate": 3.0282054883864434e-05,
1913
+ "loss": 1.0016,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.7338709677419355,
1918
+ "grad_norm": 0.3920371074761728,
1919
+ "learning_rate": 3.0205400661218e-05,
1920
+ "loss": 0.9427,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.7365591397849462,
1925
+ "grad_norm": 0.4525036893342772,
1926
+ "learning_rate": 3.0128543210467273e-05,
1927
+ "loss": 1.0566,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.739247311827957,
1932
+ "grad_norm": 0.41264407607647574,
1933
+ "learning_rate": 3.0051484062134632e-05,
1934
+ "loss": 0.9899,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.7419354838709677,
1939
+ "grad_norm": 0.37437706613357397,
1940
+ "learning_rate": 2.9974224750759017e-05,
1941
+ "loss": 0.9817,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.7446236559139785,
1946
+ "grad_norm": 0.3844600838817203,
1947
+ "learning_rate": 2.9896766814865355e-05,
1948
+ "loss": 1.0263,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.7473118279569892,
1953
+ "grad_norm": 0.4310511049000039,
1954
+ "learning_rate": 2.9819111796933948e-05,
1955
+ "loss": 0.9781,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.75,
1960
+ "grad_norm": 0.40281595760365946,
1961
+ "learning_rate": 2.9741261243369746e-05,
1962
+ "loss": 1.0273,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.7526881720430108,
1967
+ "grad_norm": 0.4498302856339957,
1968
+ "learning_rate": 2.9663216704471547e-05,
1969
+ "loss": 0.9886,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.7553763440860215,
1974
+ "grad_norm": 0.4350406167421517,
1975
+ "learning_rate": 2.958497973440114e-05,
1976
+ "loss": 1.0247,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.7580645161290323,
1981
+ "grad_norm": 0.46748351737565624,
1982
+ "learning_rate": 2.9506551891152334e-05,
1983
+ "loss": 1.0072,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.760752688172043,
1988
+ "grad_norm": 0.3998308958015181,
1989
+ "learning_rate": 2.9427934736519962e-05,
1990
+ "loss": 1.076,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.7634408602150538,
1995
+ "grad_norm": 0.42326867383664013,
1996
+ "learning_rate": 2.9349129836068732e-05,
1997
+ "loss": 0.9895,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.7661290322580645,
2002
+ "grad_norm": 0.3949205497118407,
2003
+ "learning_rate": 2.9270138759102108e-05,
2004
+ "loss": 1.027,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.7688172043010753,
2009
+ "grad_norm": 0.40826149975955933,
2010
+ "learning_rate": 2.919096307863104e-05,
2011
+ "loss": 1.0128,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.771505376344086,
2016
+ "grad_norm": 0.6045575439891937,
2017
+ "learning_rate": 2.9111604371342593e-05,
2018
+ "loss": 0.9806,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.7741935483870968,
2023
+ "grad_norm": 0.3906743864943639,
2024
+ "learning_rate": 2.903206421756862e-05,
2025
+ "loss": 1.0126,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.7768817204301075,
2030
+ "grad_norm": 0.37994713789537804,
2031
+ "learning_rate": 2.8952344201254253e-05,
2032
+ "loss": 0.9984,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.7795698924731183,
2037
+ "grad_norm": 0.4560671009564336,
2038
+ "learning_rate": 2.8872445909926358e-05,
2039
+ "loss": 0.9846,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.782258064516129,
2044
+ "grad_norm": 0.40231158085064994,
2045
+ "learning_rate": 2.8792370934661948e-05,
2046
+ "loss": 1.0403,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.7849462365591398,
2051
+ "grad_norm": 0.4776678536973747,
2052
+ "learning_rate": 2.8712120870056455e-05,
2053
+ "loss": 1.0327,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.7876344086021505,
2058
+ "grad_norm": 0.45302618010000684,
2059
+ "learning_rate": 2.8631697314192012e-05,
2060
+ "loss": 1.0126,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.7903225806451613,
2065
+ "grad_norm": 0.4332121059542856,
2066
+ "learning_rate": 2.8551101868605644e-05,
2067
+ "loss": 1.0475,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.793010752688172,
2072
+ "grad_norm": 0.4498441085262953,
2073
+ "learning_rate": 2.8470336138257315e-05,
2074
+ "loss": 1.0178,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.7956989247311828,
2079
+ "grad_norm": 0.39208633969875073,
2080
+ "learning_rate": 2.8389401731498018e-05,
2081
+ "loss": 1.0127,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.7983870967741935,
2086
+ "grad_norm": 0.4042053763726035,
2087
+ "learning_rate": 2.8308300260037734e-05,
2088
+ "loss": 0.9732,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.8010752688172043,
2093
+ "grad_norm": 0.42842239164240437,
2094
+ "learning_rate": 2.8227033338913318e-05,
2095
+ "loss": 1.0152,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.803763440860215,
2100
+ "grad_norm": 0.3807866452863404,
2101
+ "learning_rate": 2.814560258645638e-05,
2102
+ "loss": 1.0189,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.8064516129032258,
2107
+ "grad_norm": 0.43852909963759557,
2108
+ "learning_rate": 2.8064009624260994e-05,
2109
+ "loss": 1.0084,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.8091397849462365,
2114
+ "grad_norm": 0.5122035327018767,
2115
+ "learning_rate": 2.7982256077151482e-05,
2116
+ "loss": 1.0098,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.8118279569892473,
2121
+ "grad_norm": 0.38079784946729706,
2122
+ "learning_rate": 2.7900343573150003e-05,
2123
+ "loss": 1.0097,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.8145161290322581,
2128
+ "grad_norm": 0.3583539130301541,
2129
+ "learning_rate": 2.7818273743444132e-05,
2130
+ "loss": 0.9964,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.8172043010752689,
2135
+ "grad_norm": 0.3813956107048218,
2136
+ "learning_rate": 2.7736048222354414e-05,
2137
+ "loss": 0.9761,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.8198924731182796,
2142
+ "grad_norm": 0.3901758217275271,
2143
+ "learning_rate": 2.7653668647301797e-05,
2144
+ "loss": 1.0117,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.8225806451612904,
2149
+ "grad_norm": 0.41237780052722667,
2150
+ "learning_rate": 2.757113665877502e-05,
2151
+ "loss": 0.9653,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.8252688172043011,
2156
+ "grad_norm": 0.457306901223017,
2157
+ "learning_rate": 2.748845390029794e-05,
2158
+ "loss": 1.0524,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.8279569892473119,
2163
+ "grad_norm": 0.3791723859065832,
2164
+ "learning_rate": 2.740562201839684e-05,
2165
+ "loss": 0.9861,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.8306451612903226,
2170
+ "grad_norm": 0.500338650948681,
2171
+ "learning_rate": 2.7322642662567592e-05,
2172
+ "loss": 0.9705,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.8333333333333334,
2177
+ "grad_norm": 0.4052884593861236,
2178
+ "learning_rate": 2.7239517485242836e-05,
2179
+ "loss": 0.9892,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.8360215053763441,
2184
+ "grad_norm": 0.3969000439893693,
2185
+ "learning_rate": 2.715624814175907e-05,
2186
+ "loss": 0.9883,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.8387096774193549,
2191
+ "grad_norm": 0.5254585071566374,
2192
+ "learning_rate": 2.7072836290323698e-05,
2193
+ "loss": 1.08,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.8413978494623656,
2198
+ "grad_norm": 0.5111475952965409,
2199
+ "learning_rate": 2.698928359198197e-05,
2200
+ "loss": 1.0526,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.8440860215053764,
2205
+ "grad_norm": 0.4717493748353866,
2206
+ "learning_rate": 2.6905591710583957e-05,
2207
+ "loss": 1.0137,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.8467741935483871,
2212
+ "grad_norm": 0.3838063749897804,
2213
+ "learning_rate": 2.6821762312751368e-05,
2214
+ "loss": 0.9901,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 0.8494623655913979,
2219
+ "grad_norm": 0.3456617314343378,
2220
+ "learning_rate": 2.6737797067844403e-05,
2221
+ "loss": 1.0034,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 0.8521505376344086,
2226
+ "grad_norm": 0.37971130684639953,
2227
+ "learning_rate": 2.6653697647928485e-05,
2228
+ "loss": 0.9552,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 0.8548387096774194,
2233
+ "grad_norm": 0.3820801267530888,
2234
+ "learning_rate": 2.656946572774095e-05,
2235
+ "loss": 0.9236,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 0.8575268817204301,
2240
+ "grad_norm": 0.4114917943590629,
2241
+ "learning_rate": 2.648510298465775e-05,
2242
+ "loss": 1.0,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 0.8602150537634409,
2247
+ "grad_norm": 0.4185665498381875,
2248
+ "learning_rate": 2.6400611098659988e-05,
2249
+ "loss": 1.0435,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 0.8629032258064516,
2254
+ "grad_norm": 0.36227121606774076,
2255
+ "learning_rate": 2.6315991752300503e-05,
2256
+ "loss": 0.9797,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 0.8655913978494624,
2261
+ "grad_norm": 0.40186567244596927,
2262
+ "learning_rate": 2.623124663067034e-05,
2263
+ "loss": 1.0071,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 0.8682795698924731,
2268
+ "grad_norm": 0.3833356371805648,
2269
+ "learning_rate": 2.6146377421365225e-05,
2270
+ "loss": 1.0159,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 0.8709677419354839,
2275
+ "grad_norm": 0.41469411381713683,
2276
+ "learning_rate": 2.6061385814451913e-05,
2277
+ "loss": 1.0277,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 0.8736559139784946,
2282
+ "grad_norm": 0.92622435409038,
2283
+ "learning_rate": 2.5976273502434584e-05,
2284
+ "loss": 1.0001,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 0.8763440860215054,
2289
+ "grad_norm": 0.4316506228630945,
2290
+ "learning_rate": 2.5891042180221094e-05,
2291
+ "loss": 1.0712,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 0.8790322580645161,
2296
+ "grad_norm": 0.42656057546508047,
2297
+ "learning_rate": 2.580569354508925e-05,
2298
+ "loss": 1.0074,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 0.8817204301075269,
2303
+ "grad_norm": 0.3789318712710433,
2304
+ "learning_rate": 2.5720229296653006e-05,
2305
+ "loss": 1.0355,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 0.8844086021505376,
2310
+ "grad_norm": 0.367154670317836,
2311
+ "learning_rate": 2.5634651136828597e-05,
2312
+ "loss": 1.0394,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 0.8870967741935484,
2317
+ "grad_norm": 0.4735001007157819,
2318
+ "learning_rate": 2.554896076980069e-05,
2319
+ "loss": 1.0552,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 0.8897849462365591,
2324
+ "grad_norm": 0.4390567460028508,
2325
+ "learning_rate": 2.54631599019884e-05,
2326
+ "loss": 1.0043,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 0.8924731182795699,
2331
+ "grad_norm": 0.3642787415401991,
2332
+ "learning_rate": 2.5377250242011338e-05,
2333
+ "loss": 0.9854,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 0.8951612903225806,
2338
+ "grad_norm": 0.4524235630593109,
2339
+ "learning_rate": 2.5291233500655584e-05,
2340
+ "loss": 1.0029,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 0.8978494623655914,
2345
+ "grad_norm": 0.4097887869063476,
2346
+ "learning_rate": 2.52051113908396e-05,
2347
+ "loss": 1.0122,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 0.9005376344086021,
2352
+ "grad_norm": 0.3852040955735104,
2353
+ "learning_rate": 2.5118885627580155e-05,
2354
+ "loss": 0.9779,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 0.9032258064516129,
2359
+ "grad_norm": 0.40481656602470306,
2360
+ "learning_rate": 2.5032557927958116e-05,
2361
+ "loss": 1.0125,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 0.9059139784946236,
2366
+ "grad_norm": 0.4118716752579493,
2367
+ "learning_rate": 2.494613001108431e-05,
2368
+ "loss": 1.0364,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 0.9086021505376344,
2373
+ "grad_norm": 0.4489453038959667,
2374
+ "learning_rate": 2.485960359806528e-05,
2375
+ "loss": 1.0436,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 0.9112903225806451,
2380
+ "grad_norm": 0.41112406404210244,
2381
+ "learning_rate": 2.4772980411968975e-05,
2382
+ "loss": 0.9545,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 0.9139784946236559,
2387
+ "grad_norm": 0.4856093390929945,
2388
+ "learning_rate": 2.468626217779047e-05,
2389
+ "loss": 0.9854,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 0.9166666666666666,
2394
+ "grad_norm": 0.37523760134058665,
2395
+ "learning_rate": 2.4599450622417615e-05,
2396
+ "loss": 0.9699,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 0.9193548387096774,
2401
+ "grad_norm": 0.4064413347216363,
2402
+ "learning_rate": 2.4512547474596624e-05,
2403
+ "loss": 1.0083,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 0.9220430107526881,
2408
+ "grad_norm": 0.44550717714004195,
2409
+ "learning_rate": 2.4425554464897675e-05,
2410
+ "loss": 1.0175,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 0.9247311827956989,
2415
+ "grad_norm": 0.44076297740074416,
2416
+ "learning_rate": 2.433847332568042e-05,
2417
+ "loss": 0.9718,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 0.9274193548387096,
2422
+ "grad_norm": 0.4971040038925624,
2423
+ "learning_rate": 2.4251305791059533e-05,
2424
+ "loss": 1.0317,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 0.9301075268817204,
2429
+ "grad_norm": 0.35978037050758516,
2430
+ "learning_rate": 2.416405359687012e-05,
2431
+ "loss": 0.9693,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 0.9327956989247311,
2436
+ "grad_norm": 0.41817202738352904,
2437
+ "learning_rate": 2.4076718480633178e-05,
2438
+ "loss": 0.9764,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 0.9354838709677419,
2443
+ "grad_norm": 0.4130988765844788,
2444
+ "learning_rate": 2.398930218152101e-05,
2445
+ "loss": 0.9548,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 0.9381720430107527,
2450
+ "grad_norm": 0.47899471351234146,
2451
+ "learning_rate": 2.390180644032257e-05,
2452
+ "loss": 0.9965,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 0.9408602150537635,
2457
+ "grad_norm": 0.3639159912649112,
2458
+ "learning_rate": 2.38142329994088e-05,
2459
+ "loss": 0.945,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 0.9435483870967742,
2464
+ "grad_norm": 0.41552533932477614,
2465
+ "learning_rate": 2.372658360269796e-05,
2466
+ "loss": 0.976,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 0.946236559139785,
2471
+ "grad_norm": 0.4127471276078075,
2472
+ "learning_rate": 2.363885999562084e-05,
2473
+ "loss": 1.0493,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 0.9489247311827957,
2478
+ "grad_norm": 0.42874463629780296,
2479
+ "learning_rate": 2.3551063925086072e-05,
2480
+ "loss": 1.0003,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 0.9516129032258065,
2485
+ "grad_norm": 0.4542236208271591,
2486
+ "learning_rate": 2.3463197139445284e-05,
2487
+ "loss": 1.0189,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 0.9543010752688172,
2492
+ "grad_norm": 0.8840248169596676,
2493
+ "learning_rate": 2.3375261388458318e-05,
2494
+ "loss": 1.0006,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 0.956989247311828,
2499
+ "grad_norm": 0.47762507803159143,
2500
+ "learning_rate": 2.3287258423258405e-05,
2501
+ "loss": 1.0101,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 0.9596774193548387,
2506
+ "grad_norm": 0.42765004964798886,
2507
+ "learning_rate": 2.3199189996317205e-05,
2508
+ "loss": 0.9896,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 0.9623655913978495,
2513
+ "grad_norm": 0.4236101839000849,
2514
+ "learning_rate": 2.3111057861410026e-05,
2515
+ "loss": 0.9931,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 0.9650537634408602,
2520
+ "grad_norm": 0.38884571703952686,
2521
+ "learning_rate": 2.3022863773580813e-05,
2522
+ "loss": 0.9394,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 0.967741935483871,
2527
+ "grad_norm": 0.5378824587688318,
2528
+ "learning_rate": 2.2934609489107236e-05,
2529
+ "loss": 0.9842,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 0.9704301075268817,
2534
+ "grad_norm": 0.39925462372416454,
2535
+ "learning_rate": 2.2846296765465708e-05,
2536
+ "loss": 1.0026,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 0.9731182795698925,
2541
+ "grad_norm": 0.9592078982505338,
2542
+ "learning_rate": 2.2757927361296376e-05,
2543
+ "loss": 1.0332,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 0.9758064516129032,
2548
+ "grad_norm": 0.4396877320552629,
2549
+ "learning_rate": 2.2669503036368124e-05,
2550
+ "loss": 0.9971,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 0.978494623655914,
2555
+ "grad_norm": 0.38966539914800313,
2556
+ "learning_rate": 2.2581025551543516e-05,
2557
+ "loss": 0.9469,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 0.9811827956989247,
2562
+ "grad_norm": 0.4216276354211585,
2563
+ "learning_rate": 2.249249666874372e-05,
2564
+ "loss": 1.0322,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 0.9838709677419355,
2569
+ "grad_norm": 0.4351959975704115,
2570
+ "learning_rate": 2.240391815091344e-05,
2571
+ "loss": 0.962,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 0.9865591397849462,
2576
+ "grad_norm": 0.35811079366878923,
2577
+ "learning_rate": 2.2315291761985803e-05,
2578
+ "loss": 0.9937,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 0.989247311827957,
2583
+ "grad_norm": 0.3605918004740936,
2584
+ "learning_rate": 2.222661926684722e-05,
2585
+ "loss": 0.991,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 0.9919354838709677,
2590
+ "grad_norm": 0.4176512601533839,
2591
+ "learning_rate": 2.2137902431302264e-05,
2592
+ "loss": 1.0332,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 0.9946236559139785,
2597
+ "grad_norm": 0.42340462982190896,
2598
+ "learning_rate": 2.2049143022038472e-05,
2599
+ "loss": 0.9922,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 0.9973118279569892,
2604
+ "grad_norm": 0.420010163587815,
2605
+ "learning_rate": 2.196034280659122e-05,
2606
+ "loss": 1.0155,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 1.0,
2611
+ "grad_norm": 0.41657151819377736,
2612
+ "learning_rate": 2.1871503553308447e-05,
2613
+ "loss": 0.9901,
2614
+ "step": 372
2615
+ }
2616
+ ],
2617
+ "logging_steps": 1,
2618
+ "max_steps": 744,
2619
+ "num_input_tokens_seen": 0,
2620
+ "num_train_epochs": 2,
2621
+ "save_steps": 186,
2622
+ "stateful_callbacks": {
2623
+ "TrainerControl": {
2624
+ "args": {
2625
+ "should_epoch_stop": false,
2626
+ "should_evaluate": false,
2627
+ "should_log": false,
2628
+ "should_save": true,
2629
+ "should_training_stop": false
2630
+ },
2631
+ "attributes": {}
2632
+ }
2633
+ },
2634
+ "total_flos": 1543405087752192.0,
2635
+ "train_batch_size": 2,
2636
+ "trial_name": null,
2637
+ "trial_params": null
2638
+ }
checkpoint-372/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c574a542610586eece3e815b9131ccb7250e0a30f832b8334e93e7c963db81b
3
+ size 8696
checkpoint-372/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)