Add training monkeypatches
Browse files
modeling_qwen3_shared_moe_monkeypatch_liger_cce.py
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Charles O. Goddard, The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
#
|
| 16 |
+
# The following monkeypatches were applied by Doctor Shotgun:
|
| 17 |
+
#
|
| 18 |
+
# Liger Kernel (https://github.com/linkedin/Liger-Kernel):
|
| 19 |
+
# 1. Liger RMSNorm
|
| 20 |
+
# 2. Liger RoPE
|
| 21 |
+
# 3. Liger SwiGLUMLP
|
| 22 |
+
#
|
| 23 |
+
# Cut Cross-Entropy (https://github.com/apple/ml-cross-entropy):
|
| 24 |
+
# 1. Cut Cross-Entropy
|
| 25 |
+
"""PyTorch Qwen3 model with shared expert support."""
|
| 26 |
+
|
| 27 |
+
from typing import List, Optional, Union
|
| 28 |
+
|
| 29 |
+
import torch
|
| 30 |
+
from torch import nn
|
| 31 |
+
import torch.nn.functional as F
|
| 32 |
+
|
| 33 |
+
# CCE Patch #
|
| 34 |
+
from cut_cross_entropy.linear_cross_entropy import LCE_IMPL_DEFAULT
|
| 35 |
+
from cut_cross_entropy.transformers.utils import (
|
| 36 |
+
PatchOptions,
|
| 37 |
+
apply_lce,
|
| 38 |
+
)
|
| 39 |
+
_PATCH_OPTS = PatchOptions(
|
| 40 |
+
impl=LCE_IMPL_DEFAULT,
|
| 41 |
+
reduction="mean",
|
| 42 |
+
filter_eps="auto",
|
| 43 |
+
accum_e_fp32=False,
|
| 44 |
+
accum_c_fp32=False,
|
| 45 |
+
filter_e_grad=True,
|
| 46 |
+
filter_c_grad=True,
|
| 47 |
+
train_only=False,
|
| 48 |
+
)
|
| 49 |
+
# CCE Patch #
|
| 50 |
+
|
| 51 |
+
# Liger Patch #
|
| 52 |
+
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
| 53 |
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP
|
| 54 |
+
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
| 55 |
+
|
| 56 |
+
import transformers.models.qwen3_moe.modeling_qwen3_moe
|
| 57 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeRMSNorm = LigerRMSNorm
|
| 58 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeMLP = LigerQwen3MoeSwiGLUMLP
|
| 59 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
|
| 60 |
+
# Liger Patch #
|
| 61 |
+
|
| 62 |
+
from transformers.modeling_outputs import (
|
| 63 |
+
MoeCausalLMOutputWithPast,
|
| 64 |
+
MoeModelOutputWithPast,
|
| 65 |
+
)
|
| 66 |
+
from transformers.activations import ACT2FN
|
| 67 |
+
from transformers.utils import logging
|
| 68 |
+
from transformers.models.mixtral.modeling_mixtral import (
|
| 69 |
+
load_balancing_loss_func,
|
| 70 |
+
)
|
| 71 |
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import (
|
| 72 |
+
Qwen3MoeMLP,
|
| 73 |
+
Qwen3MoeRMSNorm,
|
| 74 |
+
Qwen3MoeAttention,
|
| 75 |
+
Qwen3MoeDecoderLayer,
|
| 76 |
+
Qwen3MoeModel,
|
| 77 |
+
Qwen3MoeForCausalLM,
|
| 78 |
+
)
|
| 79 |
+
from .configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
|
| 80 |
+
|
| 81 |
+
import scattermoe
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
logger = logging.get_logger(__name__)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class Qwen3SharedMoeSparseMoeBlock(nn.Module):
|
| 88 |
+
def __init__(self, config: Qwen3SharedMoeConfig):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.config = config
|
| 91 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
| 92 |
+
if config.shared_expert_intermediate_size is not None:
|
| 93 |
+
self.shared_expert = Qwen3MoeMLP(
|
| 94 |
+
config, intermediate_size=config.shared_expert_intermediate_size
|
| 95 |
+
)
|
| 96 |
+
else:
|
| 97 |
+
self.shared_expert = None
|
| 98 |
+
self.moe_mlp = scattermoe.mlp.GLUMLP(
|
| 99 |
+
input_size=self.config.hidden_size,
|
| 100 |
+
hidden_size=self.config.moe_intermediate_size,
|
| 101 |
+
num_experts=self.config.num_experts,
|
| 102 |
+
top_k=self.config.num_experts_per_tok,
|
| 103 |
+
activation=ACT2FN[config.hidden_act],
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 107 |
+
# handling of gate/router logits copied from Qwen3MoeSparseMoeBlock
|
| 108 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 109 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 110 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 111 |
+
router_logits = self.gate(hidden_states)
|
| 112 |
+
|
| 113 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 114 |
+
routing_weights, selected_experts = torch.topk(
|
| 115 |
+
routing_weights, self.config.num_experts_per_tok, dim=-1
|
| 116 |
+
)
|
| 117 |
+
if self.config.norm_topk_prob: # only diff with mixtral sparse moe block!
|
| 118 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 119 |
+
# we cast back to the input dtype
|
| 120 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 121 |
+
|
| 122 |
+
# modified here to use scattermoe + shared_expert
|
| 123 |
+
hs_0 = self.moe_mlp(hidden_states, routing_weights, selected_experts)
|
| 124 |
+
|
| 125 |
+
if self.shared_expert is not None:
|
| 126 |
+
shared_res = self.shared_expert(hidden_states)
|
| 127 |
+
res = hs_0 + shared_res
|
| 128 |
+
else:
|
| 129 |
+
res = hs_0
|
| 130 |
+
res = res.reshape(batch_size, sequence_length, hidden_dim)
|
| 131 |
+
return res, router_logits
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class Qwen3SharedMoeDecoderLayer(Qwen3MoeDecoderLayer, nn.Module):
|
| 135 |
+
def __init__(self, config: Qwen3SharedMoeConfig, layer_idx: int):
|
| 136 |
+
super().__init__(config, layer_idx)
|
| 137 |
+
self.hidden_size = config.hidden_size
|
| 138 |
+
|
| 139 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
| 140 |
+
|
| 141 |
+
if (layer_idx not in config.mlp_only_layers) and (
|
| 142 |
+
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
|
| 143 |
+
):
|
| 144 |
+
self.mlp = Qwen3SharedMoeSparseMoeBlock(config)
|
| 145 |
+
else:
|
| 146 |
+
self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)
|
| 147 |
+
|
| 148 |
+
self.input_layernorm = Qwen3MoeRMSNorm(
|
| 149 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 150 |
+
)
|
| 151 |
+
self.post_attention_layernorm = Qwen3MoeRMSNorm(
|
| 152 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class Qwen3SharedMoeModel(Qwen3MoeModel):
|
| 157 |
+
config_class = Qwen3SharedMoeConfig
|
| 158 |
+
|
| 159 |
+
def __init__(self, config: Qwen3SharedMoeConfig):
|
| 160 |
+
super().__init__(config)
|
| 161 |
+
self.layers = nn.ModuleList(
|
| 162 |
+
[
|
| 163 |
+
Qwen3SharedMoeDecoderLayer(config, layer_idx)
|
| 164 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 165 |
+
]
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class Qwen3SharedMoeForCausalLM(Qwen3MoeForCausalLM):
|
| 170 |
+
config_class = Qwen3SharedMoeConfig
|
| 171 |
+
|
| 172 |
+
def __init__(self, config):
|
| 173 |
+
super().__init__(config)
|
| 174 |
+
self.model = Qwen3SharedMoeModel(config)
|
| 175 |
+
self.num_experts = config.num_experts
|
| 176 |
+
|
| 177 |
+
# CCE Patch #
|
| 178 |
+
def forward(
|
| 179 |
+
self,
|
| 180 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 181 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 182 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 183 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
| 184 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 185 |
+
labels: Optional[torch.LongTensor] = None,
|
| 186 |
+
use_cache: Optional[bool] = None,
|
| 187 |
+
output_attentions: Optional[bool] = None,
|
| 188 |
+
output_hidden_states: Optional[bool] = None,
|
| 189 |
+
output_router_logits: Optional[bool] = None,
|
| 190 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 191 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 192 |
+
**kwargs,
|
| 193 |
+
) -> MoeCausalLMOutputWithPast:
|
| 194 |
+
|
| 195 |
+
output_attentions = (
|
| 196 |
+
output_attentions
|
| 197 |
+
if output_attentions is not None
|
| 198 |
+
else self.config.output_attentions
|
| 199 |
+
)
|
| 200 |
+
output_router_logits = (
|
| 201 |
+
output_router_logits
|
| 202 |
+
if output_router_logits is not None
|
| 203 |
+
else self.config.output_router_logits
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
output_hidden_states = (
|
| 207 |
+
output_hidden_states
|
| 208 |
+
if output_hidden_states is not None
|
| 209 |
+
else self.config.output_hidden_states
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 213 |
+
outputs: MoeModelOutputWithPast = self.model(
|
| 214 |
+
input_ids=input_ids,
|
| 215 |
+
attention_mask=attention_mask,
|
| 216 |
+
position_ids=position_ids,
|
| 217 |
+
past_key_values=past_key_values,
|
| 218 |
+
inputs_embeds=inputs_embeds,
|
| 219 |
+
use_cache=use_cache,
|
| 220 |
+
output_attentions=output_attentions,
|
| 221 |
+
output_hidden_states=output_hidden_states,
|
| 222 |
+
output_router_logits=output_router_logits,
|
| 223 |
+
cache_position=cache_position,
|
| 224 |
+
**kwargs,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
hidden_states = outputs.last_hidden_state
|
| 228 |
+
|
| 229 |
+
if hidden_states is None:
|
| 230 |
+
raise ValueError("hidden_states is None")
|
| 231 |
+
|
| 232 |
+
loss = None
|
| 233 |
+
logits = None
|
| 234 |
+
|
| 235 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 236 |
+
slice_indices = (
|
| 237 |
+
slice(-logits_to_keep, None)
|
| 238 |
+
if isinstance(logits_to_keep, int)
|
| 239 |
+
else logits_to_keep
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if _PATCH_OPTS is not None and _PATCH_OPTS.use_lce(labels, self.training):
|
| 243 |
+
assert labels is not None
|
| 244 |
+
loss = apply_lce(
|
| 245 |
+
hidden_states[:, slice_indices, :],
|
| 246 |
+
self.lm_head.weight,
|
| 247 |
+
labels,
|
| 248 |
+
_PATCH_OPTS,
|
| 249 |
+
**kwargs,
|
| 250 |
+
)
|
| 251 |
+
else:
|
| 252 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 253 |
+
|
| 254 |
+
if labels is not None:
|
| 255 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
| 256 |
+
|
| 257 |
+
aux_loss = None
|
| 258 |
+
if output_router_logits:
|
| 259 |
+
aux_loss = load_balancing_loss_func(
|
| 260 |
+
outputs.router_logits,
|
| 261 |
+
self.num_experts,
|
| 262 |
+
self.num_experts_per_tok,
|
| 263 |
+
attention_mask,
|
| 264 |
+
)
|
| 265 |
+
if labels is not None:
|
| 266 |
+
loss += self.router_aux_loss_coef * aux_loss.to(
|
| 267 |
+
loss.device
|
| 268 |
+
) # make sure to reside in the same device
|
| 269 |
+
|
| 270 |
+
return MoeCausalLMOutputWithPast(
|
| 271 |
+
loss=loss,
|
| 272 |
+
aux_loss=aux_loss,
|
| 273 |
+
logits=logits,
|
| 274 |
+
past_key_values=outputs.past_key_values,
|
| 275 |
+
hidden_states=outputs.hidden_states,
|
| 276 |
+
attentions=outputs.attentions,
|
| 277 |
+
router_logits=outputs.router_logits,
|
| 278 |
+
)
|
| 279 |
+
# CCE Patch #
|
| 280 |
+
|
modeling_qwen3_shared_moe_monkeypatch_liger_flce.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Charles O. Goddard, The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
#
|
| 16 |
+
# The following monkeypatches were applied by Doctor Shotgun:
|
| 17 |
+
#
|
| 18 |
+
# Liger Kernel (https://github.com/linkedin/Liger-Kernel):
|
| 19 |
+
# 1. Liger RMSNorm
|
| 20 |
+
# 2. Liger RoPE
|
| 21 |
+
# 3. Liger SwiGLUMLP
|
| 22 |
+
# 4. Liger Fused Linear Cross-Entropy
|
| 23 |
+
"""PyTorch Qwen3 model with shared expert support."""
|
| 24 |
+
|
| 25 |
+
from typing import List, Optional, Union
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
from torch import nn
|
| 29 |
+
import torch.nn.functional as F
|
| 30 |
+
|
| 31 |
+
# Liger Patch #
|
| 32 |
+
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
| 33 |
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP
|
| 34 |
+
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
| 35 |
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
| 36 |
+
|
| 37 |
+
import transformers.models.qwen3_moe.modeling_qwen3_moe
|
| 38 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeRMSNorm = LigerRMSNorm
|
| 39 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeMLP = LigerQwen3MoeSwiGLUMLP
|
| 40 |
+
transformers.models.qwen3_moe.modeling_qwen3_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
|
| 41 |
+
# Liger Patch #
|
| 42 |
+
|
| 43 |
+
from transformers.modeling_outputs import (
|
| 44 |
+
MoeCausalLMOutputWithPast,
|
| 45 |
+
MoeModelOutputWithPast,
|
| 46 |
+
)
|
| 47 |
+
from transformers.activations import ACT2FN
|
| 48 |
+
from transformers.utils import logging
|
| 49 |
+
from transformers.models.mixtral.modeling_mixtral import (
|
| 50 |
+
load_balancing_loss_func,
|
| 51 |
+
)
|
| 52 |
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import (
|
| 53 |
+
Qwen3MoeMLP,
|
| 54 |
+
Qwen3MoeRMSNorm,
|
| 55 |
+
Qwen3MoeAttention,
|
| 56 |
+
Qwen3MoeDecoderLayer,
|
| 57 |
+
Qwen3MoeModel,
|
| 58 |
+
Qwen3MoeForCausalLM,
|
| 59 |
+
)
|
| 60 |
+
from .configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
|
| 61 |
+
|
| 62 |
+
import scattermoe
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
logger = logging.get_logger(__name__)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class Qwen3SharedMoeSparseMoeBlock(nn.Module):
|
| 69 |
+
def __init__(self, config: Qwen3SharedMoeConfig):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.config = config
|
| 72 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
| 73 |
+
if config.shared_expert_intermediate_size is not None:
|
| 74 |
+
self.shared_expert = Qwen3MoeMLP(
|
| 75 |
+
config, intermediate_size=config.shared_expert_intermediate_size
|
| 76 |
+
)
|
| 77 |
+
else:
|
| 78 |
+
self.shared_expert = None
|
| 79 |
+
self.moe_mlp = scattermoe.mlp.GLUMLP(
|
| 80 |
+
input_size=self.config.hidden_size,
|
| 81 |
+
hidden_size=self.config.moe_intermediate_size,
|
| 82 |
+
num_experts=self.config.num_experts,
|
| 83 |
+
top_k=self.config.num_experts_per_tok,
|
| 84 |
+
activation=ACT2FN[config.hidden_act],
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 88 |
+
# handling of gate/router logits copied from Qwen3MoeSparseMoeBlock
|
| 89 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 90 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 91 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 92 |
+
router_logits = self.gate(hidden_states)
|
| 93 |
+
|
| 94 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 95 |
+
routing_weights, selected_experts = torch.topk(
|
| 96 |
+
routing_weights, self.config.num_experts_per_tok, dim=-1
|
| 97 |
+
)
|
| 98 |
+
if self.config.norm_topk_prob: # only diff with mixtral sparse moe block!
|
| 99 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 100 |
+
# we cast back to the input dtype
|
| 101 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 102 |
+
|
| 103 |
+
# modified here to use scattermoe + shared_expert
|
| 104 |
+
hs_0 = self.moe_mlp(hidden_states, routing_weights, selected_experts)
|
| 105 |
+
|
| 106 |
+
if self.shared_expert is not None:
|
| 107 |
+
shared_res = self.shared_expert(hidden_states)
|
| 108 |
+
res = hs_0 + shared_res
|
| 109 |
+
else:
|
| 110 |
+
res = hs_0
|
| 111 |
+
res = res.reshape(batch_size, sequence_length, hidden_dim)
|
| 112 |
+
return res, router_logits
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class Qwen3SharedMoeDecoderLayer(Qwen3MoeDecoderLayer, nn.Module):
|
| 116 |
+
def __init__(self, config: Qwen3SharedMoeConfig, layer_idx: int):
|
| 117 |
+
super().__init__(config, layer_idx)
|
| 118 |
+
self.hidden_size = config.hidden_size
|
| 119 |
+
|
| 120 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
| 121 |
+
|
| 122 |
+
if (layer_idx not in config.mlp_only_layers) and (
|
| 123 |
+
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
|
| 124 |
+
):
|
| 125 |
+
self.mlp = Qwen3SharedMoeSparseMoeBlock(config)
|
| 126 |
+
else:
|
| 127 |
+
self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)
|
| 128 |
+
|
| 129 |
+
self.input_layernorm = Qwen3MoeRMSNorm(
|
| 130 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 131 |
+
)
|
| 132 |
+
self.post_attention_layernorm = Qwen3MoeRMSNorm(
|
| 133 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class Qwen3SharedMoeModel(Qwen3MoeModel):
|
| 138 |
+
config_class = Qwen3SharedMoeConfig
|
| 139 |
+
|
| 140 |
+
def __init__(self, config: Qwen3SharedMoeConfig):
|
| 141 |
+
super().__init__(config)
|
| 142 |
+
self.layers = nn.ModuleList(
|
| 143 |
+
[
|
| 144 |
+
Qwen3SharedMoeDecoderLayer(config, layer_idx)
|
| 145 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 146 |
+
]
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class Qwen3SharedMoeForCausalLM(Qwen3MoeForCausalLM):
|
| 151 |
+
config_class = Qwen3SharedMoeConfig
|
| 152 |
+
|
| 153 |
+
def __init__(self, config):
|
| 154 |
+
super().__init__(config)
|
| 155 |
+
self.model = Qwen3SharedMoeModel(config)
|
| 156 |
+
self.num_experts = config.num_experts
|
| 157 |
+
|
| 158 |
+
# Liger Patch #
|
| 159 |
+
def forward(
|
| 160 |
+
self,
|
| 161 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 162 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 163 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 164 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 165 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 166 |
+
labels: Optional[torch.LongTensor] = None,
|
| 167 |
+
use_cache: Optional[bool] = None,
|
| 168 |
+
output_attentions: Optional[bool] = None,
|
| 169 |
+
output_hidden_states: Optional[bool] = None,
|
| 170 |
+
output_router_logits: Optional[bool] = None,
|
| 171 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 172 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 173 |
+
skip_logits: Optional[bool] = None,
|
| 174 |
+
**kwargs,
|
| 175 |
+
) -> MoeCausalLMOutputWithPast:
|
| 176 |
+
r"""
|
| 177 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 178 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 179 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 180 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 181 |
+
|
| 182 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
| 183 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
| 184 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 185 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 186 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
| 187 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
|
| 191 |
+
Example:
|
| 192 |
+
|
| 193 |
+
```python
|
| 194 |
+
>>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
|
| 195 |
+
|
| 196 |
+
>>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
| 197 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
| 198 |
+
|
| 199 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 200 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 201 |
+
|
| 202 |
+
>>> # Generate
|
| 203 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 204 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 205 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 206 |
+
```"""
|
| 207 |
+
|
| 208 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 209 |
+
output_router_logits = (
|
| 210 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
output_hidden_states = (
|
| 214 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 218 |
+
outputs: MoeModelOutputWithPast = self.model(
|
| 219 |
+
input_ids=input_ids,
|
| 220 |
+
attention_mask=attention_mask,
|
| 221 |
+
position_ids=position_ids,
|
| 222 |
+
past_key_values=past_key_values,
|
| 223 |
+
inputs_embeds=inputs_embeds,
|
| 224 |
+
use_cache=use_cache,
|
| 225 |
+
output_attentions=output_attentions,
|
| 226 |
+
output_hidden_states=output_hidden_states,
|
| 227 |
+
output_router_logits=output_router_logits,
|
| 228 |
+
cache_position=cache_position,
|
| 229 |
+
**kwargs,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
hidden_states = outputs.last_hidden_state
|
| 233 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 234 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 235 |
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
| 236 |
+
|
| 237 |
+
shift_labels = kwargs.pop("shift_labels", None)
|
| 238 |
+
logits = None
|
| 239 |
+
loss = None
|
| 240 |
+
|
| 241 |
+
if skip_logits is None:
|
| 242 |
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
| 243 |
+
|
| 244 |
+
if skip_logits:
|
| 245 |
+
loss = LigerForCausalLMLoss(
|
| 246 |
+
hidden_states=kept_hidden_states,
|
| 247 |
+
lm_head_weight=self.lm_head.weight,
|
| 248 |
+
labels=labels,
|
| 249 |
+
shift_labels=shift_labels,
|
| 250 |
+
hidden_size=self.config.hidden_size,
|
| 251 |
+
**kwargs,
|
| 252 |
+
)
|
| 253 |
+
else: # if in inference model materialize logits
|
| 254 |
+
logits = self.lm_head(kept_hidden_states)
|
| 255 |
+
if labels is not None:
|
| 256 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
| 257 |
+
|
| 258 |
+
aux_loss = None
|
| 259 |
+
if output_router_logits:
|
| 260 |
+
aux_loss = load_balancing_loss_func(
|
| 261 |
+
outputs.router_logits,
|
| 262 |
+
self.num_experts,
|
| 263 |
+
self.num_experts_per_tok,
|
| 264 |
+
attention_mask,
|
| 265 |
+
)
|
| 266 |
+
if labels is not None:
|
| 267 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
| 268 |
+
|
| 269 |
+
return MoeCausalLMOutputWithPast(
|
| 270 |
+
loss=loss,
|
| 271 |
+
aux_loss=aux_loss,
|
| 272 |
+
logits=logits,
|
| 273 |
+
past_key_values=outputs.past_key_values,
|
| 274 |
+
hidden_states=outputs.hidden_states,
|
| 275 |
+
attentions=outputs.attentions,
|
| 276 |
+
router_logits=outputs.router_logits,
|
| 277 |
+
)
|
| 278 |
+
# Liger Patch #
|
| 279 |
+
|