ydeng9 commited on
Commit
fdef9d6
·
verified ·
1 Parent(s): 1653858

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model:
4
+ - meta-llama/Llama-3.2-1B
5
+ ---
6
+
7
+ ## Overview
8
+ A brief description of what this model does and how it’s unique or relevant:
9
+
10
+ - **Goal**: Classification upon safety of the input text sequences.
11
+ - **Model Description**: DuoGuard-1B-Llama-3.2-transfer is a multilingual, decoder-only LLM-based classifier specifically designed for safety content moderation across 12 distinct subcategories. Each forward pass produces a 12-dimensional logits vector, where each dimension corresponds to a specific content risk area, such as violent crimes, hate, or sexual content. By applying a sigmoid function to these logits, users obtain a multi-label probability distribution, which allows for fine-grained detection of potentially unsafe or disallowed content.
12
+ For simplified binary moderation tasks, the model can be used to produce a single “safe”/“unsafe” label by taking the maximum of the 12 subcategory probabilities and comparing it to a given threshold (e.g., 0.5). If the maximum probability across all categories is above the threshold, the content is deemed “unsafe.” Otherwise, it is considered “safe.”
13
+
14
+ DuoGuard-1B-Llama-3.2-transfer is built upon Llama-3.2-1B, a multilingual large language model supporting 8 languages—including English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. We directly leverage the training data developed fro DuoGuard-0.5B to train Llama-3.2-1B and obtain DuoGuard-1B-Llama-3.2-transfer. Thus, it is specialized (fine-tuned) for safety content moderation primarily in English, French, German, and Spanish, while still retaining the broader language coverage inherited from the Llama-3.2-1B base model. It is provided with open weights.
15
+ ## How to Use
16
+ A quick code snippet or set of instructions on how to load and use your model in an application or script:
17
+ ```python
18
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
19
+ import torch
20
+
21
+ # 1. Initialize the tokenizer
22
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
23
+ tokenizer.pad_token = tokenizer.eos_token
24
+
25
+ # 2. Load the DuoGuard-0.5B model
26
+ model = AutoModelForSequenceClassification.from_pretrained(
27
+ "DuoGuard/DuoGuard-1B-Llama-3.2-transfer",
28
+ torch_dtype=torch.bfloat16
29
+ ).to('cuda:0')
30
+
31
+ # 3. Define a sample prompt to test
32
+ prompt = "How to kill a python process?"
33
+
34
+ # 4. Tokenize the prompt
35
+ inputs = tokenizer(
36
+ prompt,
37
+ return_tensors="pt",
38
+ truncation=True,
39
+ max_length=512 # adjust as needed
40
+ ).to('cuda:0')
41
+
42
+ # 5. Run the model (inference)
43
+ with torch.no_grad():
44
+ outputs = model(**inputs)
45
+ # DuoGuard outputs a 12-dimensional vector (one probability per subcategory).
46
+ logits = outputs.logits # shape: (batch_size, 12)
47
+ probabilities = torch.sigmoid(logits) # element-wise sigmoid
48
+
49
+ # 6. Multi-label predictions (one for each category)
50
+ threshold = 0.5
51
+ category_names = [
52
+ "Violent crimes",
53
+ "Non-violent crimes",
54
+ "Sex-related crimes",
55
+ "Child sexual exploitation",
56
+ "Specialized advice",
57
+ "Privacy",
58
+ "Intellectual property",
59
+ "Indiscriminate weapons",
60
+ "Hate",
61
+ "Suicide and self-harm",
62
+ "Sexual content",
63
+ "Jailbreak prompts",
64
+ ]
65
+
66
+ # Extract probabilities for the single prompt (batch_size = 1)
67
+ prob_vector = probabilities[0].tolist() # shape: (12,)
68
+
69
+ predicted_labels = []
70
+ for cat_name, prob in zip(category_names, prob_vector):
71
+ label = 1 if prob > threshold else 0
72
+ predicted_labels.append(label)
73
+
74
+ # 7. Overall binary classification: "safe" vs. "unsafe"
75
+ # We consider the prompt "unsafe" if ANY category is above the threshold.
76
+ max_prob = max(prob_vector)
77
+ overall_label = 1 if max_prob > threshold else 0 # 1 => unsafe, 0 => safe
78
+
79
+ # 8. Print results
80
+ print(f"Prompt: {prompt}\n")
81
+ print(f"Multi-label Probabilities (threshold={threshold}):")
82
+ for cat_name, prob, label in zip(category_names, prob_vector, predicted_labels):
83
+ print(f" - {cat_name}: {prob:.3f}")
84
+
85
+ print(f"\nMaximum probability across all categories: {max_prob:.3f}")
86
+ print(f"Overall Prompt Classification => {'UNSAFE' if overall_label == 1 else 'SAFE'}")
87
+ ```
88
+
89
+ ### Citation
90
+
91
+ ```plaintext
92
+ @misc{deng2024duoguard,
93
+ title={DuoGuard: A Two-Player RL-Driven Framework for Multilingual LLM Guardrails},
94
+ author={Yihe Deng and Yu Yang and Junkai Zhang and Wei Wang and Bo Li},
95
+ year={2024},
96
+ eprint={2407.},
97
+ archivePrefix={arXiv},
98
+ primaryClass={cs.CL},
99
+ url={https://arxiv.org/abs/2407.},
100
+ }
101
+ ```