Update handler.py
Browse files- handler.py +12 -45
handler.py
CHANGED
|
@@ -1,40 +1,18 @@
|
|
| 1 |
from typing import Dict, Any
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
import base64
|
| 7 |
import requests
|
| 8 |
-
from qwen_vl_utils import process_vision_info
|
| 9 |
|
| 10 |
class EndpointHandler():
|
| 11 |
def __init__(self, path=""):
|
| 12 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
-
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 14 |
-
path,
|
| 15 |
-
torch_dtype="auto",
|
| 16 |
-
device_map="auto"
|
| 17 |
-
).to(self.device)
|
| 18 |
-
|
| 19 |
self.processor = AutoProcessor.from_pretrained(path)
|
| 20 |
-
|
| 21 |
-
# Optionally, adjust min_pixels and max_pixels if needed
|
| 22 |
-
# min_pixels = 256*28*28
|
| 23 |
-
# max_pixels = 1280*28*28
|
| 24 |
-
# self.processor = AutoProcessor.from_pretrained(path, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 25 |
|
| 26 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
| 27 |
-
"""
|
| 28 |
-
Args:
|
| 29 |
-
data (Any): The input data, which can be:
|
| 30 |
-
- Binary image data in the request body.
|
| 31 |
-
- A dictionary with 'image' and 'text' keys:
|
| 32 |
-
- 'image': Base64-encoded image string or image URL.
|
| 33 |
-
- 'text': The text prompt.
|
| 34 |
-
|
| 35 |
-
Returns:
|
| 36 |
-
Dict[str, Any]: The generated text output from the model.
|
| 37 |
-
"""
|
| 38 |
default_prompt = "Describe this image."
|
| 39 |
|
| 40 |
if isinstance(data, (bytes, bytearray)):
|
|
@@ -46,8 +24,7 @@ class EndpointHandler():
|
|
| 46 |
if image_input is None:
|
| 47 |
return {"error": "No image provided."}
|
| 48 |
if image_input.startswith('http'):
|
| 49 |
-
|
| 50 |
-
image = Image.open(io.BytesIO(response.content)).convert('RGB')
|
| 51 |
else:
|
| 52 |
image_data = base64.b64decode(image_input)
|
| 53 |
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
|
@@ -58,34 +35,24 @@ class EndpointHandler():
|
|
| 58 |
{
|
| 59 |
"role": "user",
|
| 60 |
"content": [
|
| 61 |
-
{
|
| 62 |
-
"type": "image",
|
| 63 |
-
"image": image,
|
| 64 |
-
},
|
| 65 |
{"type": "text", "text": text_input},
|
| 66 |
],
|
| 67 |
}
|
| 68 |
]
|
| 69 |
|
| 70 |
-
text = self.processor.apply_chat_template(
|
| 71 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 72 |
-
)
|
| 73 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 74 |
inputs = self.processor(
|
| 75 |
text=[text],
|
| 76 |
-
images=
|
| 77 |
-
videos=video_inputs,
|
| 78 |
padding=True,
|
| 79 |
return_tensors="pt",
|
| 80 |
-
)
|
| 81 |
-
inputs = inputs.to(self.device)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
generated_ids_trimmed = [
|
| 85 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 86 |
-
]
|
| 87 |
output_text = self.processor.batch_decode(
|
| 88 |
-
|
| 89 |
-
)
|
| 90 |
|
| 91 |
-
return {"generated_text": output_text
|
|
|
|
|
|
| 1 |
from typing import Dict, Any
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
import base64
|
| 7 |
import requests
|
|
|
|
| 8 |
|
| 9 |
class EndpointHandler():
|
| 10 |
def __init__(self, path=""):
|
| 11 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(path).to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
self.processor = AutoProcessor.from_pretrained(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
default_prompt = "Describe this image."
|
| 17 |
|
| 18 |
if isinstance(data, (bytes, bytearray)):
|
|
|
|
| 24 |
if image_input is None:
|
| 25 |
return {"error": "No image provided."}
|
| 26 |
if image_input.startswith('http'):
|
| 27 |
+
image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB')
|
|
|
|
| 28 |
else:
|
| 29 |
image_data = base64.b64decode(image_input)
|
| 30 |
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
|
|
|
| 35 |
{
|
| 36 |
"role": "user",
|
| 37 |
"content": [
|
| 38 |
+
{"type": "image", "image": image},
|
|
|
|
|
|
|
|
|
|
| 39 |
{"type": "text", "text": text_input},
|
| 40 |
],
|
| 41 |
}
|
| 42 |
]
|
| 43 |
|
| 44 |
+
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
| 45 |
inputs = self.processor(
|
| 46 |
text=[text],
|
| 47 |
+
images=[image],
|
|
|
|
| 48 |
padding=True,
|
| 49 |
return_tensors="pt",
|
| 50 |
+
).to(self.device)
|
|
|
|
| 51 |
|
| 52 |
+
generate_ids = self.model.generate(inputs.input_ids, max_length=30)
|
|
|
|
|
|
|
|
|
|
| 53 |
output_text = self.processor.batch_decode(
|
| 54 |
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 55 |
+
)[0]
|
| 56 |
|
| 57 |
+
return {"generated_text": output_text}
|
| 58 |
+
|