---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:n<1K
- loss:MultipleNegativesRankingLoss
base_model: OrdalieTech/Solon-embeddings-large-0.1
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: All of them
sentences:
- Constantly
- He looked a lot older.
- A white cat sits on a wall.
- source_sentence: dog in pool
sentences:
- A dog playing
- Jon addressed the man.
- China fought a civil war.
- source_sentence: It is true
sentences:
- Is that true?
- Crafts are being done.
- A whale eats the fish.
- source_sentence: it gets it.
sentences:
- it gets it
- The dog has small ears.
- Two dogs swim in the lake.
- source_sentence: fish in bowl
sentences:
- People fishing.
- The people are outside
- '"Sue me" Royko wrote.'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on OrdalieTech/Solon-embeddings-large-0.1
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9098199425026479
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0901800574973521
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9075503101830836
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9098199425026479
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9098199425026479
name: Max Accuracy
---
# SentenceTransformer based on OrdalieTech/Solon-embeddings-large-0.1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [OrdalieTech/Solon-embeddings-large-0.1](https://huggingface.co/OrdalieTech/Solon-embeddings-large-0.1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [OrdalieTech/Solon-embeddings-large-0.1](https://huggingface.co/OrdalieTech/Solon-embeddings-large-0.1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Godefroyduchalard/solone-embedding")
# Run inference
sentences = [
'fish in bowl',
'People fishing.',
'The people are outside',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `all-nli-test`
* Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9098 |
| dot_accuracy | 0.0902 |
| manhattan_accuracy | 0.9076 |
| euclidean_accuracy | 0.9098 |
| **max_accuracy** | **0.9098** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 66 training samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Odeadom | Office de développement de l'économie agricole des départements d'outre-mer | L'Office d'Eradication des Déchets Agricoles dans les Départements Métropolitains. |
| OFII | Office français de l'immigration et de l'intégration | L'Office français de l'immigration et de l'intégration est un organisme chargé de faciliter les déplacements internationaux des entreprises françaises à travers le monde. |
| Ofpra | Office français de protection des réfugiés et apatrides | L'Ofpra est un organisme chargé de l'évaluation et du contrôle des demandes d'asile présentées par les étrangers qui souhaitent s'installer en France, tout en veillant à ce que ces derniers ne représentent pas une menace pour la sécurité nationale. |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. |
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. |
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters