Update README.md
Browse files
README.md
CHANGED
|
@@ -10,3 +10,34 @@ license: mit
|
|
| 10 |
|
| 11 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 12 |
This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 12 |
This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
|
| 13 |
+
|
| 14 |
+
## How to use
|
| 15 |
+
```Python
|
| 16 |
+
from transformers import AutoConfig, AutoModel, AutoFeatureExtractor
|
| 17 |
+
|
| 18 |
+
model_name = "HachiML/MOMENT-1-large-embedding-v0.1"
|
| 19 |
+
|
| 20 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 21 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True)
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
```Python
|
| 25 |
+
import torch
|
| 26 |
+
|
| 27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
+
print(device)
|
| 29 |
+
|
| 30 |
+
model.to(device)
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
```Python
|
| 34 |
+
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv")
|
| 35 |
+
input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512]
|
| 36 |
+
|
| 37 |
+
inputs = feature_extractor(input_data, return_tensors="pt")
|
| 38 |
+
# inputs = feature_extractor([input_data], return_tensors="pt") # You can also pass multiple data in a list.
|
| 39 |
+
|
| 40 |
+
inputs = inputs.to(device)
|
| 41 |
+
outputs = model(**inputs)
|
| 42 |
+
print(outputs.embeddings)
|
| 43 |
+
```
|