File size: 10,202 Bytes
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
d4ed0f5
2bdc7d5
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
 
 
 
d4ed0f5
2bdc7d5
d4ed0f5
2bdc7d5
 
 
 
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
d4ed0f5
 
 
 
2bdc7d5
d4ed0f5
2bdc7d5
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
 
d4ed0f5
 
 
 
 
2bdc7d5
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
d4ed0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdc7d5
d4ed0f5
2bdc7d5
d4ed0f5
 
 
 
 
2bdc7d5
d4ed0f5
2bdc7d5
d4ed0f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
language: en
license: mit
library_name: peft
tags:
- shakespeare
- question-answering
- bert
- lora
- peft
- extractive-qa
- literature
- education
- nlp
datasets:
- custom
metrics:
- exact_match
- f1
model-index:
- name: bert-base-uncase-lora-shakespeare-plays
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      type: custom
      name: Shakespeare Q&A Dataset
    metrics:
    - type: exact_match
      value: 0.85
      name: Exact Match
    - type: f1
      value: 0.89
      name: F1 Score
base_model: bert-base-uncased
widget:
- text: "Who is Romeo?"
  context: "Romeo Montague is a young man from the Montague family in Verona. He falls deeply in love with Juliet Capulet, whose family is feuding with the Montagues. Despite their families' hatred, Romeo and Juliet secretly marry."
  example_title: "Character Question"
- text: "What happens at the end of Romeo and Juliet?"
  context: "The play ends tragically when miscommunication leads to both lovers' deaths. Romeo, believing Juliet to be dead, drinks poison. When Juliet awakens to find Romeo dead, she takes her own life. Their deaths finally reconcile the feuding families."
  example_title: "Plot Question"
- text: "What themes are explored in Macbeth?"
  context: "Macbeth explores themes of ambition, guilt, and the corrupting nature of unchecked power. The play shows how Macbeth's ambition leads him to murder and tyranny, while guilt consumes both him and Lady Macbeth."
  example_title: "Theme Question"
- text: "Who encourages Macbeth to kill Duncan?"
  context: "Lady Macbeth is instrumental in convincing Macbeth to murder King Duncan. She questions his manhood and ambition, ultimately persuading him to commit the act that sets the tragedy in motion."
  example_title: "Character Analysis"
- text: "What does Hamlet's soliloquy reveal?"
  context: "Hamlet's famous 'To be or not to be' soliloquy reveals his deep contemplation of life and death, existence and non-existence. He weighs the pain of life against the uncertainty of death, showing his philosophical nature and internal struggle."
  example_title: "Literary Analysis"
pipeline_tag: question-answering
---

# BERT Base Uncased LoRA - Shakespeare Q&A

This model is a LoRA (Low-Rank Adaptation) fine-tuned version of BERT Base Uncased for extractive question answering on Shakespeare's works. It specializes in answering questions about characters, plots, themes, and literary elements in Shakespeare's plays and sonnets.

## Model Description

- **Model type:** Question Answering (Extractive)
- **Base model:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
- **Fine-tuning method:** LoRA (Low-Rank Adaptation)
- **Domain:** Shakespeare's literary works
- **Language:** English (Early Modern English / Shakespearean)
- **Library:** [PEFT](https://github.com/huggingface/peft)

## Intended uses & limitations

### Intended uses

- πŸŽ“ **Educational tools** for Shakespeare studies
- πŸ“š **Literature analysis** and research assistance
- πŸ‘¨β€πŸŽ“ **Student homework help** for Shakespeare courses
- πŸ”¬ **Digital humanities** research projects
- πŸ€– **Chatbots** focused on classical literature
- πŸ“– **Reading comprehension** for Shakespeare texts

### Limitations

- **Domain-specific**: Optimized for Shakespeare only; may not work well on modern texts
- **Extractive only**: Cannot generate answers not present in the provided context
- **Context length**: Limited to 512 tokens (BERT's maximum sequence length)
- **Language style**: Best performance with Shakespearean/Early Modern English
- **No real-time knowledge**: Cannot answer questions about events after training

## How to use

### Quick start

```python
from transformers import BertTokenizerFast, BertForQuestionAnswering
from peft import PeftModel
import torch

# Load the model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
base_model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
model = PeftModel.from_pretrained(base_model, "Hananguyen12/bert-base-uncase-lora-shakespeare-plays")

def answer_question(question, context):
    inputs = tokenizer(question, context, return_tensors="pt", max_length=512, truncation=True)
    
    with torch.no_grad():
        outputs = model(**inputs)
    
    start_idx = torch.argmax(outputs.start_logits)
    end_idx = torch.argmax(outputs.end_logits)
    
    answer_tokens = inputs['input_ids'][0][start_idx:end_idx+1]
    answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
    
    return answer

# Example usage
question = "Who is Romeo?"
context = "Romeo Montague is a young man from the Montague family in Verona. He falls in love with Juliet Capulet."
answer = answer_question(question, context)
print(f"Answer: {answer}")
```

### Batch processing

```python
def batch_answer_questions(questions, contexts, batch_size=8):
    results = []
    
    for i in range(0, len(questions), batch_size):
        batch_q = questions[i:i+batch_size]
        batch_c = contexts[i:i+batch_size]
        
        inputs = tokenizer(batch_q, batch_c, return_tensors="pt", padding=True, truncation=True, max_length=512)
        
        with torch.no_grad():
            outputs = model(**inputs)
        
        for j in range(len(batch_q)):
            start_idx = torch.argmax(outputs.start_logits[j])
            end_idx = torch.argmax(outputs.end_logits[j])
            
            answer_tokens = inputs['input_ids'][j][start_idx:end_idx+1]
            answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
            results.append(answer)
    
    return results
```

## Training details

### Training data

The model was fine-tuned on a comprehensive Shakespeare dataset containing:

- **Size**: ~15,000+ question-answer pairs
- **Coverage**: Major plays (Hamlet, Romeo & Juliet, Macbeth, Othello, King Lear, etc.)
- **Question types**: 
  - Character analysis (25%)
  - Plot understanding (30%)
  - Thematic interpretation (20%)
  - Language/literary analysis (15%)
  - Historical context (10%)

### Training procedure

#### LoRA configuration

- **Rank (r)**: 16
- **Alpha**: 32
- **Dropout**: 0.1
- **Target modules**: `["query", "key", "value", "dense"]`
- **Trainable parameters**: ~0.3% of total model parameters

#### Training hyperparameters

- **Base model**: bert-base-uncased
- **Task**: Extractive Question Answering
- **Optimizer**: AdamW
- **Learning rate**: 2e-4
- **Batch size**: 16 (effective with gradient accumulation)
- **Max sequence length**: 512
- **Epochs**: 4
- **Warmup steps**: 500
- **Weight decay**: 0.01

#### Compute infrastructure

- **Hardware**: NVIDIA Tesla T4/V100 GPU
- **Software**: PyTorch, Transformers, PEFT
- **Training time**: ~2-3 hours
- **Memory usage**: ~12GB GPU memory

## Evaluation

### Metrics

The model achieves strong performance on Shakespeare-specific question answering:

| Metric | Score |
|--------|-------|
| Exact Match | 85.2% |
| F1 Score | 89.1% |
| Start Position Accuracy | 91.3% |
| End Position Accuracy | 88.7% |

### Performance by question type

| Question Type | Exact Match | F1 Score |
|---------------|-------------|----------|
| Character Questions | 87.5% | 91.2% |
| Plot Questions | 84.1% | 88.3% |
| Theme Questions | 82.9% | 87.6% |
| Literary Analysis | 86.3% | 90.1% |

## Example applications

### Educational chatbot

```python
class ShakespeareChatbot:
    def __init__(self):
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        base_model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
        self.model = PeftModel.from_pretrained(base_model, "Hananguyen12/bert-base-uncase-lora-shakespeare-plays")
    
    def ask(self, question, play_context):
        return answer_question(question, play_context)

# Usage
chatbot = ShakespeareChatbot()
answer = chatbot.ask("What motivates Lady Macbeth?", macbeth_context)
```

### Literature analysis tool

```python
def analyze_character(character_name, context_passages):
    questions = [
        f"Who is {character_name}?",
        f"What motivates {character_name}?",
        f"How does {character_name} change throughout the play?",
        f"What is {character_name}'s relationship to other characters?"
    ]
    
    analysis = {}
    for question in questions:
        for passage in context_passages:
            answer = answer_question(question, passage)
            if answer and len(answer.strip()) > 3:
                analysis[question] = answer
                break
    
    return analysis
```

## Environmental impact

- **Hardware type**: NVIDIA Tesla T4/V100
- **Hours used**: ~3 hours total training time
- **Cloud provider**: Google Colab
- **Carbon emitted**: Minimal due to efficient LoRA training

## Technical specifications

### Model architecture

- **Base model**: BERT Base Uncased (110M parameters)
- **LoRA adaptation**: 16-rank adaptation on attention layers
- **Total parameters**: ~110M (only ~0.3% trainable)
- **Model size**: ~440MB (base) + ~2MB (LoRA adapter)

### Software versions

- **Transformers**: 4.35.0+
- **PEFT**: 0.6.0+
- **PyTorch**: 2.0.0+
- **Python**: 3.8+

## Citation

```bibtex
@misc{shakespeare-bert-lora-2025,
  title={BERT Base Uncased LoRA - Shakespeare Q&A},
  author={Hananguyen12},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/Hananguyen12/bert-base-uncase-lora-shakespeare-plays},
  note={LoRA fine-tuned BERT model for Shakespeare question answering}
}
```

## Model card authors

Hananguyen12

## Model card contact

For questions about this model, please open an issue in the model repository or contact through Hugging Face.

## License

This model is released under the MIT License. The base BERT model follows its original Apache 2.0 license.

## Acknowledgments

- **Base model**: Google's BERT Base Uncased
- **LoRA technique**: Microsoft's Low-Rank Adaptation
- **Framework**: HuggingFace Transformers and PEFT
- **Training platform**: Google Colab
- **Dataset**: Shakespeare's complete works

---

*"All the world's a stage, and all the men and women merely players." - As You Like It, Act II, Scene VII*