Add README for instanovoplus-v1.1.0
Browse files
README.md
CHANGED
|
@@ -1,10 +1,206 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
-
-
|
| 4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-nc-sa-4.0
|
| 3 |
+
library_name: pytorch
|
| 4 |
tags:
|
| 5 |
+
- proteomics
|
| 6 |
+
- mass-spectrometry
|
| 7 |
+
- peptide-sequencing
|
| 8 |
+
- de-novo-sequencing
|
| 9 |
+
- diffusion
|
| 10 |
+
- multinomial-diffusion
|
| 11 |
+
- biology
|
| 12 |
+
- computational-biology
|
| 13 |
+
pipeline_tag: text-generation
|
| 14 |
+
datasets:
|
| 15 |
+
- InstaDeepAI/ms_ninespecies_benchmark
|
| 16 |
+
- InstaDeepAI/ms_proteometools
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# InstaNovoPlus: Diffusion-Powered De novo Peptide Sequencing Model
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Model Description
|
| 24 |
+
|
| 25 |
+
InstaNovoPlus is a diffusion-based model for de novo peptide sequencing from mass spectrometry data. This model leverages multinomial diffusion for accurate, database-free peptide identification for large-scale proteomics experiments.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## Usage
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
import numpy as np
|
| 33 |
+
import pandas as pd
|
| 34 |
+
from instanovo.diffusion.multinomial_diffusion import InstaNovoPlus
|
| 35 |
+
from instanovo.utils import SpectrumDataFrame
|
| 36 |
+
from instanovo.transformer.dataset import SpectrumDataset, collate_batch
|
| 37 |
+
from torch.utils.data import DataLoader
|
| 38 |
+
from instanovo.inference import ScoredSequence
|
| 39 |
+
from instanovo.inference.diffusion import DiffusionDecoder
|
| 40 |
+
from instanovo.utils.metrics import Metrics
|
| 41 |
+
from tqdm.notebook import tqdm
|
| 42 |
+
|
| 43 |
+
# Load the model from the Hugging Face Hub
|
| 44 |
+
model, config = InstaNovoPlus.from_pretrained("InstaDeepAI/instanovoplus-v1.1.0")
|
| 45 |
+
|
| 46 |
+
# Move the model to the GPU if available
|
| 47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
+
model = model.to(device).eval()
|
| 49 |
+
|
| 50 |
+
# Update the residue set with custom modifications
|
| 51 |
+
model.residue_set.update_remapping(
|
| 52 |
+
{
|
| 53 |
+
"M(ox)": "M[UNIMOD:35]",
|
| 54 |
+
"M(+15.99)": "M[UNIMOD:35]",
|
| 55 |
+
"S(p)": "S[UNIMOD:21]", # Phosphorylation
|
| 56 |
+
"T(p)": "T[UNIMOD:21]",
|
| 57 |
+
"Y(p)": "Y[UNIMOD:21]",
|
| 58 |
+
"S(+79.97)": "S[UNIMOD:21]",
|
| 59 |
+
"T(+79.97)": "T[UNIMOD:21]",
|
| 60 |
+
"Y(+79.97)": "Y[UNIMOD:21]",
|
| 61 |
+
"Q(+0.98)": "Q[UNIMOD:7]", # Deamidation
|
| 62 |
+
"N(+0.98)": "N[UNIMOD:7]",
|
| 63 |
+
"Q(+.98)": "Q[UNIMOD:7]",
|
| 64 |
+
"N(+.98)": "N[UNIMOD:7]",
|
| 65 |
+
"C(+57.02)": "C[UNIMOD:4]", # Carboxyamidomethylation
|
| 66 |
+
"(+42.01)": "[UNIMOD:1]", # Acetylation
|
| 67 |
+
"(+43.01)": "[UNIMOD:5]", # Carbamylation
|
| 68 |
+
"(-17.03)": "[UNIMOD:385]",
|
| 69 |
+
}
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Load the test data
|
| 73 |
+
sdf = SpectrumDataFrame.from_huggingface(
|
| 74 |
+
"InstaDeepAI/ms_ninespecies_benchmark",
|
| 75 |
+
is_annotated=True,
|
| 76 |
+
shuffle=False,
|
| 77 |
+
split="test[:10%]", # Let's only use a subset of the test data for faster inference
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Create the dataset
|
| 81 |
+
ds = SpectrumDataset(
|
| 82 |
+
sdf,
|
| 83 |
+
model.residue_set,
|
| 84 |
+
config.get("n_peaks", 200),
|
| 85 |
+
return_str=False,
|
| 86 |
+
annotated=True,
|
| 87 |
+
peptide_pad_length=model.config.get("max_length", 30),
|
| 88 |
+
reverse_peptide=False, # we do not reverse peptide for diffusion
|
| 89 |
+
add_eos=False,
|
| 90 |
+
tokenize_peptide=True,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Create the data loader
|
| 94 |
+
dl = DataLoader(
|
| 95 |
+
ds,
|
| 96 |
+
batch_size=64,
|
| 97 |
+
num_workers=0, # sdf requirement, handled internally
|
| 98 |
+
shuffle=False, # sdf requirement, handled internally
|
| 99 |
+
collate_fn=collate_batch,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Create the decoder
|
| 103 |
+
diffusion_decoder = DiffusionDecoder(model=model)
|
| 104 |
+
|
| 105 |
+
predictions = []
|
| 106 |
+
log_probs = []
|
| 107 |
+
|
| 108 |
+
# Iterate over the data loader
|
| 109 |
+
for batch in tqdm(dl, total=len(dl)):
|
| 110 |
+
spectra, precursors, spectra_padding_mask, peptides, _ = batch
|
| 111 |
+
spectra = spectra.to(device)
|
| 112 |
+
precursors = precursors.to(device)
|
| 113 |
+
spectra_padding_mask = spectra_padding_mask.to(device)
|
| 114 |
+
peptides = peptides.to(device)
|
| 115 |
+
|
| 116 |
+
# Perform inference
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
batch_predictions, batch_log_probs = diffusion_decoder.decode(
|
| 119 |
+
spectra=spectra,
|
| 120 |
+
spectra_padding_mask=spectra_padding_mask,
|
| 121 |
+
precursors=precursors,
|
| 122 |
+
initial_sequence=peptides,
|
| 123 |
+
)
|
| 124 |
+
predictions.extend(batch_predictions)
|
| 125 |
+
log_probs.extend(batch_log_probs)
|
| 126 |
+
|
| 127 |
+
# Initialize metrics
|
| 128 |
+
metrics = Metrics(model.residue_set, config["isotope_error_range"])
|
| 129 |
+
|
| 130 |
+
# Compute precision and recall
|
| 131 |
+
aa_precision, aa_recall, peptide_recall, peptide_precision = metrics.compute_precision_recall(
|
| 132 |
+
peptides, preds
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Compute amino acid error rate and AUC
|
| 136 |
+
aa_error_rate = metrics.compute_aa_er(targs, preds)
|
| 137 |
+
auc = metrics.calc_auc(targs, preds, np.exp(pd.Series(probs)))
|
| 138 |
+
|
| 139 |
+
print(f"amino acid error rate: {aa_error_rate:.5f}")
|
| 140 |
+
print(f"amino acid precision: {aa_precision:.5f}")
|
| 141 |
+
print(f"amino acid recall: {aa_recall:.5f}")
|
| 142 |
+
print(f"peptide precision: {peptide_precision:.5f}")
|
| 143 |
+
print(f"peptide recall: {peptide_recall:.5f}")
|
| 144 |
+
print(f"area under the PR curve: {auc:.5f}")
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
For more explanation, see the [Getting Started notebook](https://github.com/instadeepai/InstaNovo/blob/main/notebooks/getting_started_with_instanovo.ipynb) in the repository.
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
## Citation
|
| 151 |
+
|
| 152 |
+
If you use InstaNovoPlus in your research, please cite:
|
| 153 |
+
|
| 154 |
+
```bibtex
|
| 155 |
+
@article{eloff_kalogeropoulos_2025_instanovo,
|
| 156 |
+
title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale
|
| 157 |
+
proteomics experiments},
|
| 158 |
+
author = {Eloff, Kevin and Kalogeropoulos, Konstantinos and Mabona, Amandla and Morell,
|
| 159 |
+
Oliver and Catzel, Rachel and Rivera-de-Torre, Esperanza and Berg Jespersen,
|
| 160 |
+
Jakob and Williams, Wesley and van Beljouw, Sam P. B. and Skwark, Marcin J.
|
| 161 |
+
and Laustsen, Andreas Hougaard and Brouns, Stan J. J. and Ljungars,
|
| 162 |
+
Anne and Schoof, Erwin M. and Van Goey, Jeroen and auf dem Keller, Ulrich and
|
| 163 |
+
Beguir, Karim and Lopez Carranza, Nicolas and Jenkins, Timothy P.},
|
| 164 |
+
year = {2025},
|
| 165 |
+
month = {Mar},
|
| 166 |
+
day = {31},
|
| 167 |
+
journal = {Nature Machine Intelligence},
|
| 168 |
+
doi = {10.1038/s42256-025-01019-5},
|
| 169 |
+
issn = {2522-5839},
|
| 170 |
+
url = {https://doi.org/10.1038/s42256-025-01019-5}
|
| 171 |
+
}
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
## Resources
|
| 176 |
+
|
| 177 |
+
- **Code Repository**: [https://github.com/instadeepai/InstaNovo](https://github.com/instadeepai/InstaNovo)
|
| 178 |
+
- **Documentation**: [https://instadeepai.github.io/InstaNovo/](https://instadeepai.github.io/InstaNovo/)
|
| 179 |
+
- **Publication**: [https://www.nature.com/articles/s42256-025-01019-5](https://www.nature.com/articles/s42256-025-01019-5)
|
| 180 |
+
|
| 181 |
+
## License
|
| 182 |
+
|
| 183 |
+
- **Code**: Licensed under Apache License 2.0
|
| 184 |
+
- **Model Checkpoints**: Licensed under Creative Commons Non-Commercial (CC BY-NC-SA 4.0)
|
| 185 |
+
|
| 186 |
+
## Installation
|
| 187 |
+
|
| 188 |
+
```bash
|
| 189 |
+
pip install instanovo
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
For GPU support, install with CUDA dependencies:
|
| 193 |
+
```bash
|
| 194 |
+
pip install instanovo[cu126]
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
## Requirements
|
| 198 |
+
|
| 199 |
+
- Python >= 3.10, < 3.13
|
| 200 |
+
- PyTorch >= 1.13.0
|
| 201 |
+
- CUDA (optional, for GPU acceleration)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
## Support
|
| 205 |
+
|
| 206 |
+
For questions, issues, or contributions, please visit the [GitHub repository](https://github.com/instadeepai/InstaNovo) or check the [documentation](https://instadeepai.github.io/InstaNovo/).
|