INC4AI commited on
Commit
c621763
·
verified ·
1 Parent(s): ce6eeea

Update evaluate results

Browse files
Files changed (1) hide show
  1. README.md +16 -1
README.md CHANGED
@@ -19,7 +19,7 @@ Please follow the license of the original model.
19
  **vLLM usage**
20
 
21
  ~~~bash
22
- vllm serve Intel/Qwen3-30B-A3B-Thinking-2507-int4-AutoRound --tensor-parallel-size 4 --max-model-len 32768
23
  ~~~
24
 
25
  **INT4 Inference on CPU/Intel GPU/CUDA**
@@ -80,6 +80,21 @@ Here is the sample command to reproduce the model
80
  auto-round --model Qwen/Qwen3-30B-A3B-Thinking-2507 --output_dir "./tmp_autoround" --enable_torch_compile --nsamples 512 --fp_layers mlp.gate
81
  ~~~
82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  ## Ethical Considerations and Limitations
84
 
85
  The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
 
19
  **vLLM usage**
20
 
21
  ~~~bash
22
+ vllm serve Intel/Qwen3-30B-A3B-Thinking-2507-int4-AutoRound --tensor-parallel-size 4 --max-model-len 32768 --enable-expert-parallel
23
  ~~~
24
 
25
  **INT4 Inference on CPU/Intel GPU/CUDA**
 
80
  auto-round --model Qwen/Qwen3-30B-A3B-Thinking-2507 --output_dir "./tmp_autoround" --enable_torch_compile --nsamples 512 --fp_layers mlp.gate
81
  ~~~
82
 
83
+ ## Evaluate Results
84
+
85
+ | benchmark | backend | Intel/Qwen3-30B-A3B-Thinking-2507-int4-AutoRound | Qwen/Qwen3-30B-A3B-Thinking-2507 |
86
+ | :-------: | :-----: | :----------------------------------------------: | :------------------------------: |
87
+ | mmlu_pro | vllm | 0.6956 | 0.7144 |
88
+
89
+ ```
90
+ # key dependency version
91
+ torch 2.8.0
92
+ transformers 4.56.1
93
+ lm_eval 0.4.9.1
94
+ vllm 0.10.2rc3.dev106+g31bb760eb.precompiled
95
+ # vllm need to apply this pr https://github.com/vllm-project/vllm/pull/24818
96
+ ```
97
+
98
  ## Ethical Considerations and Limitations
99
 
100
  The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.