File size: 80,060 Bytes
fb00ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_qwen3_vl_moe.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Callable, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling
from transformers.utils.deprecation import deprecate_kwarg
from transformers.utils.generic import OutputRecorder, check_model_inputs
from transformers.models.qwen3_vl_moe.configuration_qwen3_vl_moe import Qwen3VLMoeConfig, Qwen3VLMoeTextConfig, Qwen3VLMoeVisionConfig


@use_kernel_forward_from_hub("RMSNorm")
class Qwen3VLMoeTextRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Qwen3VLMoeTextRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class Qwen3VLMoeTextRouter(nn.Linear):
    def __init__(self, config):
        super().__init__(config.hidden_size, config.num_experts, bias=False)
        self.hidden_size = config.hidden_size
        self.top_k = config.num_experts_per_tok
        # since all the models use norm_topk_prob, we don't need to have a extra check for it
        # self.norm_topk_prob = config.norm_topk_prob

    def forward(self, hidden_states):
        hidden_states = hidden_states.reshape(-1, self.hidden_size)
        router_logits = super().forward(hidden_states)
        routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
        routing_weights, router_indices = torch.topk(routing_weights, self.top_k, dim=-1)
        routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
        routing_weights = routing_weights.to(hidden_states.dtype)
        router_weights = torch.zeros_like(router_logits).scatter_(1, router_indices, routing_weights)
        return router_weights, router_logits, router_indices


class Qwen3VLMoeTextExperts(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_experts = config.num_experts
        self.intermediate_size = config.moe_intermediate_size
        self.hidden_size = config.hidden_size
        self.expert_dim = self.intermediate_size
        # self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
        self.gate_up_projs = nn.ModuleList([nn.Linear(self.hidden_size, 2 * self.expert_dim, bias=False) for _ in range(self.num_experts)])
        # self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
        self.down_projs = nn.ModuleList([nn.Linear(self.expert_dim, self.hidden_size, bias=False) for _ in range(self.num_experts)])
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(
        self, hidden_states: torch.Tensor, routing_weights: torch.Tensor, router_indices: torch.Tensor
    ) -> torch.Tensor:
        """
        When training it is more efficient to just loop over the experts and compute the output for each expert
        as otherwise the memory would explode.

        For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs.

        Args:
            hidden_states (torch.Tensor): (batch_size * token_num, hidden_size)
            routing_weights (torch.Tensor): (batch_size * token_num, num_experts)
            router_indices (torch.Tensor): (batch_size * token_num, top_k)
        Returns:
            torch.Tensor
        """
        batch_size = hidden_states.shape[0]
        hidden_states = hidden_states.reshape(-1, self.hidden_size)  # (num_tokens, hidden_size)
        if self.training:
            next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
            with torch.no_grad():
                expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=self.num_experts)
                expert_mask = expert_mask.permute(2, 1, 0)
                # we sum on the top_k and on the sequence length to get which experts
                # are hit this time around
                expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
            for expert_idx in expert_hit[:]:
                with torch.no_grad():
                    _, token_idx = torch.where(expert_mask[expert_idx[0]])
                current_state = hidden_states[token_idx]
                # gate_up = current_state @ self.gate_up_proj[expert_idx]
                gate_up = self.gate_up_projs[expert_idx](current_state)
                gate, up = gate_up.chunk(2, dim=-1)
                gated_output = up * self.act_fn(gate)
                # out = gated_output @ self.down_proj[expert_idx]
                out = self.down_projs[expert_idx](gated_output)
                weighted_output = out[0] * routing_weights[token_idx, expert_idx, None]
                next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
            next_states = next_states.view(batch_size, -1, self.hidden_size)
        else:
            hidden_states = hidden_states.repeat(self.num_experts, 1)
            hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size)
            # gate_up = torch.bmm(hidden_states, self.gate_up_proj)
            gate_up = torch.stack([proj(hidden_states[i]) for i, proj in enumerate(self.gate_up_projs)])
            gate, up = gate_up.chunk(2, dim=-1)  # not supported for DTensors
            # next_states = torch.bmm((up * self.act_fn(gate)), self.down_proj)
            next_states = torch.stack([proj(up[i] * self.act_fn(gate[i])) for i, proj in enumerate(self.down_projs)])
            next_states = next_states.reshape(self.num_experts, batch_size, -1, self.hidden_size)
            next_states = (
                next_states * routing_weights.transpose(0, 1).view(self.num_experts, batch_size, -1)[..., None]
            )
            next_states = next_states.sum(dim=0)
        return next_states


class Qwen3VLMoeTextSparseMoeBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_experts = config.num_experts
        self.gate = Qwen3VLMoeTextRouter(config)
        self.experts = Qwen3VLMoeTextExperts(config)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        router_weights, router_logits, router_indices = self.gate(hidden_states)
        routed_out = self.experts(hidden_states, router_weights, router_indices)
        return routed_out, router_logits


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class Qwen3VLMoeTextAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )
        self.q_norm = Qwen3VLMoeTextRMSNorm(
            self.head_dim, eps=config.rms_norm_eps
        )  # unlike olmo, only on the head dim!
        self.k_norm = Qwen3VLMoeTextRMSNorm(
            self.head_dim, eps=config.rms_norm_eps
        )  # thus post q_norm does not need reshape

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_values is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


class Qwen3VLMoeTextMLP(nn.Module):
    def __init__(self, config, intermediate_size=None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


class Qwen3VLMoeTextDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = Qwen3VLMoeTextAttention(config, layer_idx)

        if (layer_idx not in config.mlp_only_layers) and (
            config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
        ):
            self.mlp = Qwen3VLMoeTextSparseMoeBlock(config)
        else:
            self.mlp = Qwen3VLMoeTextMLP(config, intermediate_size=config.intermediate_size)

        self.input_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss,
                and should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_values (`Cache`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
            position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, _ = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        # For the MoE layers, we need to unpack
        if isinstance(hidden_states, tuple):
            hidden_states, _ = hidden_states
        hidden_states = residual + hidden_states

        return hidden_states


@auto_docstring
class Qwen3VLMoePreTrainedModel(PreTrainedModel):
    config: Qwen3VLMoeConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _can_compile_fullgraph = False  # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
    _supports_attention_backend = True
    _can_record_outputs = {
        "router_logits": OutputRecorder(Qwen3VLMoeTextSparseMoeBlock, index=1),
        "hidden_states": Qwen3VLMoeTextDecoderLayer,
        "attentions": Qwen3VLMoeTextAttention,
    }

    def _init_weights(self, module):
        """Initialize the weights."""
        super()._init_weights(module)
        if hasattr(self.config, "initializer_range"):
            std = self.config.initializer_range
        else:
            std = getattr(self.config.get_text_config(), "initializer_range", 0.02)
        # if isinstance(module, Qwen3VLMoeTextExperts):
        #     module.gate_up_proj.data.normal_(mean=0.0, std=std)
        #     module.down_proj.data.normal_(mean=0.0, std=std)


class Qwen3VLMoeVisionMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
        self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_state):
        return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state)))


class Qwen3VLMoeVisionPatchEmbed(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.patch_size = config.patch_size
        self.temporal_patch_size = config.temporal_patch_size
        self.in_channels = config.in_channels
        self.embed_dim = config.hidden_size

        kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
        self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        target_dtype = self.proj.weight.dtype
        hidden_states = hidden_states.view(
            -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
        )
        hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
        return hidden_states


class Qwen3VLMoeVisionRotaryEmbedding(nn.Module):
    inv_freq: torch.Tensor  # fix linting for `register_buffer`

    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs


class Qwen3VLMoeVisionPatchMerger(nn.Module):
    def __init__(self, config: Qwen3VLMoeVisionConfig, use_postshuffle_norm=False) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size * (config.spatial_merge_size**2)
        self.use_postshuffle_norm = use_postshuffle_norm
        self.norm = nn.LayerNorm(self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6)
        self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size)
        self.act_fn = nn.GELU()
        self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.norm(x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x).view(-1, self.hidden_size)
        x = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
        return x


def apply_rotary_pos_emb_vision(
    q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
    orig_q_dtype = q.dtype
    orig_k_dtype = k.dtype
    q, k = q.float(), k.float()
    cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    q_embed = q_embed.to(orig_q_dtype)
    k_embed = k_embed.to(orig_k_dtype)
    return q_embed, k_embed


class Qwen3VLMoeVisionAttention(nn.Module):
    def __init__(self, config: Qwen3VLMoeVisionConfig) -> None:
        super().__init__()
        self.dim = config.hidden_size
        self.num_heads = config.num_heads
        self.head_dim = self.dim // self.num_heads
        self.num_key_value_groups = 1  # needed for eager attention
        self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
        self.proj = nn.Linear(self.dim, self.dim)
        self.scaling = self.head_dim**-0.5
        self.config = config
        self.attention_dropout = 0.0
        self.is_causal = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        query_states, key_states, value_states = (
            self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        )
        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)

        query_states = query_states.transpose(0, 1).unsqueeze(0)
        key_states = key_states.transpose(0, 1).unsqueeze(0)
        value_states = value_states.transpose(0, 1).unsqueeze(0)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        if self.config._attn_implementation == "flash_attention_2":
            # Flash Attention 2: Use cu_seqlens for variable length attention
            max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
            attn_output, _ = attention_interface(
                self,
                query_states,
                key_states,
                value_states,
                attention_mask=None,
                scaling=self.scaling,
                dropout=0.0 if not self.training else self.attention_dropout,
                cu_seq_lens_q=cu_seqlens,
                cu_seq_lens_k=cu_seqlens,
                max_length_q=max_seqlen,
                max_length_k=max_seqlen,
                is_causal=False,
                **kwargs,
            )
        else:
            # Other implementations: Process each chunk separately
            lengths = cu_seqlens[1:] - cu_seqlens[:-1]
            splits = [
                torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
            ]

            attn_outputs = [
                attention_interface(
                    self,
                    q,
                    k,
                    v,
                    attention_mask=None,
                    scaling=self.scaling,
                    dropout=0.0 if not self.training else self.attention_dropout,
                    is_causal=False,
                    **kwargs,
                )[0]
                for q, k, v in zip(*splits)
            ]
            attn_output = torch.cat(attn_outputs, dim=1)

        attn_output = attn_output.reshape(seq_length, -1).contiguous()
        attn_output = self.proj(attn_output)
        return attn_output


class Qwen3VLMoeVisionBlock(GradientCheckpointingLayer):
    def __init__(self, config, attn_implementation: str = "sdpa") -> None:
        super().__init__()
        self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6)
        self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6)
        self.attn = Qwen3VLMoeVisionAttention(config=config)
        self.mlp = Qwen3VLMoeVisionMLP(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.Tensor:
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states),
            cu_seqlens=cu_seqlens,
            rotary_pos_emb=rotary_pos_emb,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
        return hidden_states


class Qwen3VLMoeVisionModel(Qwen3VLMoePreTrainedModel):
    config: Qwen3VLMoeVisionConfig
    _no_split_modules = ["Qwen3VLMoeVisionBlock"]

    def __init__(self, config, *inputs, **kwargs) -> None:
        super().__init__(config, *inputs, **kwargs)
        self.spatial_merge_size = config.spatial_merge_size
        self.patch_size = config.patch_size
        self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size

        self.patch_embed = Qwen3VLMoeVisionPatchEmbed(
            config=config,
        )

        self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size)
        self.num_grid_per_side = int(config.num_position_embeddings**0.5)

        head_dim = config.hidden_size // config.num_heads
        self.rotary_pos_emb = Qwen3VLMoeVisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList([Qwen3VLMoeVisionBlock(config) for _ in range(config.depth)])
        self.merger = Qwen3VLMoeVisionPatchMerger(
            config=config,
            use_postshuffle_norm=False,
        )

        self.deepstack_visual_indexes = config.deepstack_visual_indexes
        self.deepstack_merger_list = nn.ModuleList(
            [
                Qwen3VLMoeVisionPatchMerger(
                    config=config,
                    use_postshuffle_norm=True,
                )
                for _ in range(len(config.deepstack_visual_indexes))
            ]
        )

        self.gradient_checkpointing = False

    def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
        merge_size = self.spatial_merge_size

        max_hw = int(grid_thw[:, 1:].max().item())
        freq_table = self.rotary_pos_emb(max_hw)  # (max_hw, dim // 2)
        device = freq_table.device

        total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
        pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)

        offset = 0
        for num_frames, height, width in grid_thw:
            merged_h, merged_w = height // merge_size, width // merge_size

            block_rows = torch.arange(merged_h, device=device)  # block row indices
            block_cols = torch.arange(merged_w, device=device)  # block col indices
            intra_row = torch.arange(merge_size, device=device)  # intra-block row offsets
            intra_col = torch.arange(merge_size, device=device)  # intra-block col offsets

            # Compute full-resolution positions
            row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None]
            col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :]

            row_idx = row_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1)
            col_idx = col_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1)

            coords = torch.stack((row_idx, col_idx), dim=-1)

            if num_frames > 1:
                coords = coords.repeat(num_frames, 1)

            num_tokens = coords.shape[0]
            pos_ids[offset : offset + num_tokens] = coords
            offset += num_tokens

        embeddings = freq_table[pos_ids]  # lookup rotary embeddings
        embeddings = embeddings.flatten(1)
        return embeddings

    def fast_pos_embed_interpolate(self, grid_thw):
        grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2]

        idx_list = [[] for _ in range(4)]
        weight_list = [[] for _ in range(4)]

        for t, h, w in zip(grid_ts, grid_hs, grid_ws):
            h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h)
            w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w)

            h_idxs_floor = h_idxs.int()
            w_idxs_floor = w_idxs.int()
            h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
            w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)

            dh = h_idxs - h_idxs_floor
            dw = w_idxs - w_idxs_floor

            base_h = h_idxs_floor * self.num_grid_per_side
            base_h_ceil = h_idxs_ceil * self.num_grid_per_side

            indices = [
                (base_h[None].T + w_idxs_floor[None]).flatten(),
                (base_h[None].T + w_idxs_ceil[None]).flatten(),
                (base_h_ceil[None].T + w_idxs_floor[None]).flatten(),
                (base_h_ceil[None].T + w_idxs_ceil[None]).flatten(),
            ]

            weights = [
                ((1 - dh)[None].T * (1 - dw)[None]).flatten(),
                ((1 - dh)[None].T * dw[None]).flatten(),
                (dh[None].T * (1 - dw)[None]).flatten(),
                (dh[None].T * dw[None]).flatten(),
            ]

            for i in range(4):
                idx_list[i].extend(indices[i].tolist())
                weight_list[i].extend(weights[i].tolist())

        idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device)
        weight_tensor = torch.tensor(
            weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device
        )
        pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
        patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3]

        patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)])

        patch_pos_embeds_permute = []
        merge_size = self.config.spatial_merge_size
        for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws):
            pos_embed = pos_embed.repeat(t, 1)
            pos_embed = (
                pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1)
                .permute(0, 1, 3, 2, 4, 5)
                .flatten(0, 4)
            )
            patch_pos_embeds_permute.append(pos_embed)
        patch_pos_embeds = torch.cat(patch_pos_embeds_permute)
        return patch_pos_embeds

    def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
                The final hidden states of the model.
            grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
                The temporal, height and width of feature shape of each image in LLM.

        Returns:
            `torch.Tensor`: hidden_states.
        """
        hidden_states = self.patch_embed(hidden_states)

        pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
        hidden_states = hidden_states + pos_embeds

        rotary_pos_emb = self.rot_pos_emb(grid_thw)

        seq_len, _ = hidden_states.size()
        hidden_states = hidden_states.reshape(seq_len, -1)
        rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
        emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
        position_embeddings = (emb.cos(), emb.sin())

        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
            dim=0,
            # Select dtype based on the following factors:
            #  - FA2 requires that cu_seqlens_q must have dtype int32
            #  - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
            # See https://github.com/huggingface/transformers/pull/34852 for more information
            dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        deepstack_feature_lists = []
        for layer_num, blk in enumerate(self.blocks):
            hidden_states = blk(
                hidden_states,
                cu_seqlens=cu_seqlens,
                position_embeddings=position_embeddings,
                **kwargs,
            )
            if layer_num in self.deepstack_visual_indexes:
                deepstack_feature = self.deepstack_merger_list[self.deepstack_visual_indexes.index(layer_num)](
                    hidden_states
                )
                deepstack_feature_lists.append(deepstack_feature)

        hidden_states = self.merger(hidden_states)

        return hidden_states, deepstack_feature_lists


class Qwen3VLMoeTextRotaryEmbedding(nn.Module):
    inv_freq: torch.Tensor  # fix linting for `register_buffer`

    def __init__(self, config: Qwen3VLMoeTextConfig, device=None):
        super().__init__()
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", "default")
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

        self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20])

    def apply_interleaved_mrope(self, freqs, mrope_section):
        """Apply interleaved MRoPE to 3D rotary embeddings.
        Reorganizes frequency layout from chunked [TTT...HHH...WWW] to
        interleaved [THTHWHTHW...TT], preserving frequency continuity.
        args:
            x: (3, bs, seq_len, head_dim // 2)
            mrope_section: (3,)
        returns:
            x_t: (bs, seq_len, head_dim // 2)
        """
        freqs_t = freqs[0]  # just overwrite the first dimension T
        for dim, offset in enumerate((1, 2), start=1):  # H, W
            length = mrope_section[dim] * 3
            idx = slice(offset, length, 3)
            freqs_t[..., idx] = freqs[dim, ..., idx]
        return freqs_t

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        # In contrast to other models, Qwen3VLMoe has different position ids for the grids
        # So we expand the inv_freq to shape (3, ...)
        if position_ids.ndim == 2:
            position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
        inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
        position_ids_expanded = position_ids[:, :, None, :].float()  # shape (3, bs, 1, positions)

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
            freqs = self.apply_interleaved_mrope(freqs, self.mrope_section)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


@auto_docstring(
    custom_intro=(
        "Text part of Qwen3VLMoe, "
        "not a pure text-only model, as DeepStack integrates visual features into the early hidden states."
    )
)
class Qwen3VLMoeTextModel(Qwen3VLMoePreTrainedModel):
    config: Qwen3VLMoeTextConfig
    _no_split_modules = ["Qwen3VLMoeTextDecoderLayer"]

    def __init__(self, config: Qwen3VLMoeTextConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Qwen3VLMoeTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Qwen3VLMoeTextRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        # args for deepstack
        visual_pos_masks: Optional[torch.Tensor] = None,
        deepstack_visual_embeds: Optional[list[torch.Tensor]] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[tuple, BaseModelOutputWithPast]:
        r"""
        visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*):
            The mask of the visual positions.
        deepstack_visual_embeds (`list[torch.Tensor]`, *optional*):
            The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim).
            The feature is extracted from the different visual encoder layers, and fed to the decoder
            hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334).
        """
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        # torch.jit.trace() doesn't support cache objects in the output
        if use_cache and past_key_values is None and not torch.jit.is_tracing():
            past_key_values = DynamicCache(config=self.config)

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        # the hard coded `3` is for temporal, height and width.
        if position_ids is None:
            position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
        elif position_ids.ndim == 2:
            position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)

        if position_ids.ndim == 3 and position_ids.shape[0] == 4:
            text_position_ids = position_ids[0]
            position_ids = position_ids[1:]
        else:
            text_position_ids = position_ids[0]

        attention_mask = create_causal_mask(
            config=self.config,
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
            position_ids=text_position_ids,
        )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        for layer_idx, decoder_layer in enumerate(self.layers):
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=text_position_ids,
                past_key_values=past_key_values,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )
            hidden_states = layer_outputs

            # add visual features to the hidden states of first several layers
            if deepstack_visual_embeds is not None and layer_idx in range(len(deepstack_visual_embeds)):
                hidden_states = self._deepstack_process(
                    hidden_states,
                    visual_pos_masks,
                    deepstack_visual_embeds[layer_idx],
                )

        hidden_states = self.norm(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
        )

    def _deepstack_process(
        self, hidden_states: torch.Tensor, visual_pos_masks: torch.Tensor, visual_embeds: torch.Tensor
    ):
        visual_pos_masks = visual_pos_masks.to(hidden_states.device)
        visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype)
        local_this = hidden_states[visual_pos_masks, :].clone() + visual_embeds
        hidden_states[visual_pos_masks, :] = local_this
        return hidden_states


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for Llava outputs, with hidden states and attentions.
    """
)
class Qwen3VLMoeModelOutputWithPast(ModelOutput):
    r"""
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
        The rope index difference between sequence length and multimodal rope.
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Cache] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None


@auto_docstring
class Qwen3VLMoeModel(Qwen3VLMoePreTrainedModel):
    base_model_prefix = ""
    _checkpoint_conversion_mapping = {}
    # Reference: fix gemma3 grad acc #37208
    accepts_loss_kwargs = False
    config: Qwen3VLMoeConfig
    _no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"]

    def __init__(self, config):
        super().__init__(config)
        self.visual = Qwen3VLMoeVisionModel._from_config(config.vision_config)
        self.language_model = Qwen3VLMoeTextModel._from_config(config.text_config)
        self.rope_deltas = None  # cache rope_deltas here

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.language_model = decoder

    def get_decoder(self):
        return self.language_model

    def get_rope_index(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """Different from the original implementation, Qwen3VLMoe use timestamps rather than absolute time position ids."""

        # Since we use timestamps to seperate videos, like <t1> <vision_start> <frame1> <vision_end> <t2> <vision_start> <frame2> <vision_end>, the video_grid_thw should also be split
        if video_grid_thw is not None:
            video_grid_thw = torch.repeat_interleave(video_grid_thw, video_grid_thw[:, 0], dim=0)
            video_grid_thw[:, 0] = 1

        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id
        mrope_position_deltas = []
        if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
            total_input_ids = input_ids
            if attention_mask is None:
                attention_mask = torch.ones_like(total_input_ids)
            position_ids = torch.ones(
                3,
                input_ids.shape[0],
                input_ids.shape[1],
                dtype=input_ids.dtype,
                device=input_ids.device,
            )
            image_index, video_index = 0, 0
            attention_mask = attention_mask.to(total_input_ids.device)
            for i, input_ids in enumerate(total_input_ids):
                input_ids = input_ids[attention_mask[i] == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image

                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    # t_index is always 0 because llm_grid_t is always 1 (we use timestamps to encode the temporal information for videos)
                    t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = (
                    torch.arange(input_ids.shape[1], device=input_ids.device)
                    .view(1, 1, -1)
                    .expand(3, input_ids.shape[0], -1)
                )
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas

    def get_video_features(
        self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
    ):
        """
        Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned.

        Args:
            pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
                The tensors corresponding to the input videos.
            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
                The temporal, height and width of feature shape of each video in LLM.
        """
        # Same implementation as for images
        return self.get_image_features(pixel_values_videos, video_grid_thw)

    def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
        """
        Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned.

        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
                The tensors corresponding to the input images.
            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
                The temporal, height and width of feature shape of each image in LLM.
        """
        pixel_values = pixel_values.type(self.visual.dtype)
        image_embeds, deepstack_image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
        split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
        image_embeds = torch.split(image_embeds, split_sizes)
        return image_embeds, deepstack_image_embeds

    def get_placeholder_mask(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor,
        image_features: Optional[torch.FloatTensor] = None,
        video_features: Optional[torch.FloatTensor] = None,
    ):
        """
        Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
        equal to the length of multimodal features. If the lengths are different, an error is raised.
        """
        if input_ids is None:
            special_image_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_image_mask = special_image_mask.all(-1)
            special_video_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_video_mask = special_video_mask.all(-1)
        else:
            special_image_mask = input_ids == self.config.image_token_id
            special_video_mask = input_ids == self.config.video_token_id

        n_image_tokens = special_image_mask.sum()
        special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel():
            raise ValueError(
                f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}"
            )

        n_video_tokens = special_video_mask.sum()
        special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel():
            raise ValueError(
                f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}"
            )

        return special_image_mask, special_video_mask

    @auto_docstring
    @can_return_tuple
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, Qwen3VLMoeModelOutputWithPast]:
        r"""
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
            The temporal, height and width of feature shape of each video in LLM.
        """
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        image_mask = None
        video_mask = None

        if pixel_values is not None:
            image_embeds, deepstack_image_embeds = self.get_image_features(pixel_values, image_grid_thw)
            image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            image_mask, _ = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

        if pixel_values_videos is not None:
            video_embeds, deepstack_video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
            video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            _, video_mask = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

        visual_pos_masks = None
        deepstack_visual_embeds = None
        if image_mask is not None and video_mask is not None:
            # aggregate visual_pos_masks and deepstack_visual_embeds
            image_mask = image_mask[..., 0]
            video_mask = video_mask[..., 0]
            visual_pos_masks = image_mask | video_mask
            deepstack_visual_embeds = []
            image_mask_joint = image_mask[visual_pos_masks]
            video_mask_joint = video_mask[visual_pos_masks]
            for img_embed, vid_embed in zip(deepstack_image_embeds, deepstack_video_embeds):
                embed_joint = img_embed.new_zeros(visual_pos_masks.sum(), img_embed.shape[-1]).to(img_embed.device)
                embed_joint[image_mask_joint, :] = img_embed
                embed_joint[video_mask_joint, :] = vid_embed
                deepstack_visual_embeds.append(embed_joint)
        elif image_mask is not None:
            image_mask = image_mask[..., 0]
            visual_pos_masks = image_mask
            deepstack_visual_embeds = deepstack_image_embeds
        elif video_mask is not None:
            video_mask = video_mask[..., 0]
            visual_pos_masks = video_mask
            deepstack_visual_embeds = deepstack_video_embeds

        if position_ids is None:
            attention_mask_tensor = (
                attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"]
            )
            if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4:
                attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2)
                # Only apply conversion for floating point tensors (inverted masks)
                if attention_mask_tensor.dtype.is_floating_point:
                    attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min
                    attention_mask_tensor = (1.0 - attention_mask_tensor).int()

            # Calculate RoPE index once per generation in the pre-fill stage only.
            # When compiling, we can't check tensor values thus we check only input length
            # It is safe to assume that `length!=1` means we're in pre-fill because compiled
            # models currently cannot do asssisted decoding
            prefill_compiled_stage = is_torchdynamo_compiling() and (
                (input_ids is not None and input_ids.shape[1] != 1)
                or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
            )
            prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
                (cache_position is not None and cache_position[0] == 0)
                or (past_key_values is None or past_key_values.get_seq_length() == 0)
            )
            if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
                position_ids, rope_deltas = self.get_rope_index(
                    input_ids,
                    image_grid_thw,
                    video_grid_thw,
                    attention_mask=attention_mask_tensor,
                )
                self.rope_deltas = rope_deltas
            # then use the prev pre-calculated rope-deltas to get the correct position ids
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                delta = (
                    (cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
                    if cache_position is not None
                    else 0
                )
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                if cache_position is not None:  # otherwise `deltas` is an int `0`
                    delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
                position_ids = position_ids.add(delta)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

        outputs = self.language_model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            visual_pos_masks=visual_pos_masks,
            deepstack_visual_embeds=deepstack_visual_embeds,
            **kwargs,
        )

        return Qwen3VLMoeModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.rope_deltas,
        )


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for Qwen3VLMoe causal language model (or autoregressive) outputs.
    """
)
class Qwen3VLMoeCausalLMOutputWithPast(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
        The rope index difference between sequence length and multimodal rope.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Cache] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None


class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMixin):
    _checkpoint_conversion_mapping = {}
    _tied_weights_keys = ["lm_head.weight"]
    # Reference: fix gemma3 grad acc #37208
    accepts_loss_kwargs = False
    config: Qwen3VLMoeConfig

    def __init__(self, config):
        super().__init__(config)
        self.model = Qwen3VLMoeModel(config)
        self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)

        self.post_init()

    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.model.set_decoder(decoder)

    def get_decoder(self):
        return self.model.get_decoder()

    def get_video_features(
        self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
    ):
        return self.model.get_video_features(pixel_values_videos, video_grid_thw)

    def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
        return self.model.get_image_features(pixel_values, image_grid_thw)

    # Make modules available through conditional class for BC
    @property
    def language_model(self):
        return self.model.language_model

    @property
    def visual(self):
        return self.model.visual

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, Qwen3VLMoeCausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
            The temporal, height and width of feature shape of each video in LLM.

        Example:
            TODO: Add example
        """
        outputs = self.model(
            input_ids=input_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]

        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)

        return Qwen3VLMoeCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=outputs.rope_deltas,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        pixel_values=None,
        pixel_values_videos=None,
        image_grid_thw=None,
        video_grid_thw=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            position_ids=position_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            use_cache=use_cache,
            **kwargs,
        )

        # Qwen3VLMoe position_ids are prepareed with rope_deltas in forward
        model_inputs["position_ids"] = None

        if cache_position[0] != 0:
            model_inputs["pixel_values"] = None
            model_inputs["pixel_values_videos"] = None

        return model_inputs

    def _get_image_nums_and_video_nums(
        self,
        input_ids: Optional[torch.LongTensor],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
        These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.

        Returns:
            image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
            video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
        """
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id

        if inputs_embeds is not None:
            vision_start_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
            image_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
            video_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
        else:
            vision_start_mask = input_ids == vision_start_token_id
            image_mask = input_ids == image_token_id
            video_mask = input_ids == video_token_id

        vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
        image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
        video_nums = torch.sum(vision_first_mask & video_mask, dim=1)

        return image_nums, video_nums

    def _expand_inputs_for_generation(
        self,
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> tuple[torch.LongTensor, dict[str, Any]]:
        # Overwritten -- Support for expanding tensors without a batch size dimension
        # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
        # pixel_values.shape[0] is sum(seqlen_images for samples)
        # image_grid_thw.shape[0] is sum(num_images for samples)

        if expand_size == 1:
            return input_ids, model_kwargs

        visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]

        def _expand_dict_for_generation_visual(dict_to_expand):
            image_grid_thw = model_kwargs.get("image_grid_thw", None)
            video_grid_thw = model_kwargs.get("video_grid_thw", None)
            image_nums, video_nums = self._get_image_nums_and_video_nums(
                input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
            )

            def _repeat_interleave_samples(x, lengths, repeat_times):
                samples = torch.split(x, lengths)
                repeat_args = [repeat_times] + [1] * (x.dim() - 1)
                result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
                return result

            for key in dict_to_expand:
                if key == "pixel_values":
                    # split images into samples
                    samples = torch.split(image_grid_thw, list(image_nums))
                    # compute the sequence length of images for each sample
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "image_grid_thw":
                    # get the num of images for each sample
                    lengths = list(image_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "pixel_values_videos":
                    samples = torch.split(video_grid_thw, list(video_nums))
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "video_grid_thw":
                    lengths = list(video_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "second_per_grid_ts":
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size
                    )
            return dict_to_expand

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                    and key not in visual_keys
                ):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

        model_kwargs = _expand_dict_for_generation_visual(model_kwargs)

        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])

        return input_ids, model_kwargs


__all__ = [
    "Qwen3VLMoeVisionModel",
    "Qwen3VLMoeForConditionalGeneration",
    "Qwen3VLMoeModel",
    "Qwen3VLMoePreTrainedModel",
    "Qwen3VLMoeTextModel",
]