dav1dliu commited on
Commit
c7f9a36
·
verified ·
1 Parent(s): 675df6a

Init Commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +353 -0
  3. added_tokens.json +28 -0
  4. chat_template.jinja +85 -0
  5. config.json +43 -0
  6. configuration_sdar_moe.py +243 -0
  7. generation_config.json +13 -0
  8. layer-0-ep-0-of-1.safetensors +3 -0
  9. layer-1-ep-0-of-1.safetensors +3 -0
  10. layer-10-ep-0-of-1.safetensors +3 -0
  11. layer-11-ep-0-of-1.safetensors +3 -0
  12. layer-12-ep-0-of-1.safetensors +3 -0
  13. layer-13-ep-0-of-1.safetensors +3 -0
  14. layer-14-ep-0-of-1.safetensors +3 -0
  15. layer-15-ep-0-of-1.safetensors +3 -0
  16. layer-16-ep-0-of-1.safetensors +3 -0
  17. layer-17-ep-0-of-1.safetensors +3 -0
  18. layer-18-ep-0-of-1.safetensors +3 -0
  19. layer-19-ep-0-of-1.safetensors +3 -0
  20. layer-2-ep-0-of-1.safetensors +3 -0
  21. layer-20-ep-0-of-1.safetensors +3 -0
  22. layer-21-ep-0-of-1.safetensors +3 -0
  23. layer-22-ep-0-of-1.safetensors +3 -0
  24. layer-23-ep-0-of-1.safetensors +3 -0
  25. layer-24-ep-0-of-1.safetensors +3 -0
  26. layer-25-ep-0-of-1.safetensors +3 -0
  27. layer-26-ep-0-of-1.safetensors +3 -0
  28. layer-27-ep-0-of-1.safetensors +3 -0
  29. layer-28-ep-0-of-1.safetensors +3 -0
  30. layer-29-ep-0-of-1.safetensors +3 -0
  31. layer-3-ep-0-of-1.safetensors +3 -0
  32. layer-30-ep-0-of-1.safetensors +3 -0
  33. layer-31-ep-0-of-1.safetensors +3 -0
  34. layer-32-ep-0-of-1.safetensors +3 -0
  35. layer-33-ep-0-of-1.safetensors +3 -0
  36. layer-34-ep-0-of-1.safetensors +3 -0
  37. layer-35-ep-0-of-1.safetensors +3 -0
  38. layer-36-ep-0-of-1.safetensors +3 -0
  39. layer-37-ep-0-of-1.safetensors +3 -0
  40. layer-38-ep-0-of-1.safetensors +3 -0
  41. layer-39-ep-0-of-1.safetensors +3 -0
  42. layer-4-ep-0-of-1.safetensors +3 -0
  43. layer-40-ep-0-of-1.safetensors +3 -0
  44. layer-41-ep-0-of-1.safetensors +3 -0
  45. layer-42-ep-0-of-1.safetensors +3 -0
  46. layer-43-ep-0-of-1.safetensors +3 -0
  47. layer-44-ep-0-of-1.safetensors +3 -0
  48. layer-45-ep-0-of-1.safetensors +3 -0
  49. layer-46-ep-0-of-1.safetensors +3 -0
  50. layer-47-ep-0-of-1.safetensors +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - Qwen/Qwen3-30B-A3B-Base
8
+ ---
9
+
10
+ # Qwen3-30B-A3B
11
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
12
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
13
+ </a>
14
+
15
+ ## Qwen3 Highlights
16
+
17
+ Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
18
+
19
+ - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
20
+ - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
21
+ - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
22
+ - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
23
+ - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
24
+
25
+ ## Model Overview
26
+
27
+ **Qwen3-30B-A3B** has the following features:
28
+ - Type: Causal Language Models
29
+ - Training Stage: Pretraining & Post-training
30
+ - Number of Parameters: 30.5B in total and 3.3B activated
31
+ - Number of Paramaters (Non-Embedding): 29.9B
32
+ - Number of Layers: 48
33
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
34
+ - Number of Experts: 128
35
+ - Number of Activated Experts: 8
36
+ - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
37
+
38
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
39
+
40
+ ## Quickstart
41
+
42
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
43
+
44
+ With `transformers<4.51.0`, you will encounter the following error:
45
+ ```
46
+ KeyError: 'qwen3_moe'
47
+ ```
48
+
49
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ model_name = "Qwen/Qwen3-30B-A3B"
54
+
55
+ # load the tokenizer and the model
56
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_name,
59
+ torch_dtype="auto",
60
+ device_map="auto"
61
+ )
62
+
63
+ # prepare the model input
64
+ prompt = "Give me a short introduction to large language model."
65
+ messages = [
66
+ {"role": "user", "content": prompt}
67
+ ]
68
+ text = tokenizer.apply_chat_template(
69
+ messages,
70
+ tokenize=False,
71
+ add_generation_prompt=True,
72
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
73
+ )
74
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
75
+
76
+ # conduct text completion
77
+ generated_ids = model.generate(
78
+ **model_inputs,
79
+ max_new_tokens=32768
80
+ )
81
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
82
+
83
+ # parsing thinking content
84
+ try:
85
+ # rindex finding 151668 (</think>)
86
+ index = len(output_ids) - output_ids[::-1].index(151668)
87
+ except ValueError:
88
+ index = 0
89
+
90
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
91
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
92
+
93
+ print("thinking content:", thinking_content)
94
+ print("content:", content)
95
+ ```
96
+
97
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
98
+ - SGLang:
99
+ ```shell
100
+ python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3
101
+ ```
102
+ - vLLM:
103
+ ```shell
104
+ vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1
105
+ ```
106
+
107
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
108
+
109
+ ## Switching Between Thinking and Non-Thinking Mode
110
+
111
+ > [!TIP]
112
+ > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
113
+ > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
114
+
115
+ ### `enable_thinking=True`
116
+
117
+ By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
118
+
119
+ ```python
120
+ text = tokenizer.apply_chat_template(
121
+ messages,
122
+ tokenize=False,
123
+ add_generation_prompt=True,
124
+ enable_thinking=True # True is the default value for enable_thinking
125
+ )
126
+ ```
127
+
128
+ In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
129
+
130
+ > [!NOTE]
131
+ > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
132
+
133
+
134
+ ### `enable_thinking=False`
135
+
136
+ We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
137
+
138
+ ```python
139
+ text = tokenizer.apply_chat_template(
140
+ messages,
141
+ tokenize=False,
142
+ add_generation_prompt=True,
143
+ enable_thinking=False # Setting enable_thinking=False disables thinking mode
144
+ )
145
+ ```
146
+
147
+ In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
148
+
149
+ > [!NOTE]
150
+ > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
151
+
152
+ ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
153
+
154
+ We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
155
+
156
+ Here is an example of a multi-turn conversation:
157
+
158
+ ```python
159
+ from transformers import AutoModelForCausalLM, AutoTokenizer
160
+
161
+ class QwenChatbot:
162
+ def __init__(self, model_name="Qwen/Qwen3-30B-A3B"):
163
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
164
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
165
+ self.history = []
166
+
167
+ def generate_response(self, user_input):
168
+ messages = self.history + [{"role": "user", "content": user_input}]
169
+
170
+ text = self.tokenizer.apply_chat_template(
171
+ messages,
172
+ tokenize=False,
173
+ add_generation_prompt=True
174
+ )
175
+
176
+ inputs = self.tokenizer(text, return_tensors="pt")
177
+ response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
178
+ response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
179
+
180
+ # Update history
181
+ self.history.append({"role": "user", "content": user_input})
182
+ self.history.append({"role": "assistant", "content": response})
183
+
184
+ return response
185
+
186
+ # Example Usage
187
+ if __name__ == "__main__":
188
+ chatbot = QwenChatbot()
189
+
190
+ # First input (without /think or /no_think tags, thinking mode is enabled by default)
191
+ user_input_1 = "How many r's in strawberries?"
192
+ print(f"User: {user_input_1}")
193
+ response_1 = chatbot.generate_response(user_input_1)
194
+ print(f"Bot: {response_1}")
195
+ print("----------------------")
196
+
197
+ # Second input with /no_think
198
+ user_input_2 = "Then, how many r's in blueberries? /no_think"
199
+ print(f"User: {user_input_2}")
200
+ response_2 = chatbot.generate_response(user_input_2)
201
+ print(f"Bot: {response_2}")
202
+ print("----------------------")
203
+
204
+ # Third input with /think
205
+ user_input_3 = "Really? /think"
206
+ print(f"User: {user_input_3}")
207
+ response_3 = chatbot.generate_response(user_input_3)
208
+ print(f"Bot: {response_3}")
209
+ ```
210
+
211
+ > [!NOTE]
212
+ > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
213
+ > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
214
+
215
+ ## Agentic Use
216
+
217
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
218
+
219
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
220
+ ```python
221
+ from qwen_agent.agents import Assistant
222
+
223
+ # Define LLM
224
+ llm_cfg = {
225
+ 'model': 'Qwen3-30B-A3B',
226
+
227
+ # Use the endpoint provided by Alibaba Model Studio:
228
+ # 'model_type': 'qwen_dashscope',
229
+ # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
230
+
231
+ # Use a custom endpoint compatible with OpenAI API:
232
+ 'model_server': 'http://localhost:8000/v1', # api_base
233
+ 'api_key': 'EMPTY',
234
+
235
+ # Other parameters:
236
+ # 'generate_cfg': {
237
+ # # Add: When the response content is `<think>this is the thought</think>this is the answer;
238
+ # # Do not add: When the response has been separated by reasoning_content and content.
239
+ # 'thought_in_content': True,
240
+ # },
241
+ }
242
+
243
+ # Define Tools
244
+ tools = [
245
+ {'mcpServers': { # You can specify the MCP configuration file
246
+ 'time': {
247
+ 'command': 'uvx',
248
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
249
+ },
250
+ "fetch": {
251
+ "command": "uvx",
252
+ "args": ["mcp-server-fetch"]
253
+ }
254
+ }
255
+ },
256
+ 'code_interpreter', # Built-in tools
257
+ ]
258
+
259
+ # Define Agent
260
+ bot = Assistant(llm=llm_cfg, function_list=tools)
261
+
262
+ # Streaming generation
263
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
264
+ for responses in bot.run(messages=messages):
265
+ pass
266
+ print(responses)
267
+ ```
268
+
269
+ ## Processing Long Texts
270
+
271
+ Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
272
+
273
+ YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
274
+
275
+ - Modifying the model files:
276
+ In the `config.json` file, add the `rope_scaling` fields:
277
+ ```json
278
+ {
279
+ ...,
280
+ "rope_scaling": {
281
+ "rope_type": "yarn",
282
+ "factor": 4.0,
283
+ "original_max_position_embeddings": 32768
284
+ }
285
+ }
286
+ ```
287
+ For `llama.cpp`, you need to regenerate the GGUF file after the modification.
288
+
289
+ - Passing command line arguments:
290
+
291
+ For `vllm`, you can use
292
+ ```shell
293
+ vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
294
+ ```
295
+
296
+ For `sglang`, you can use
297
+ ```shell
298
+ python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
299
+ ```
300
+
301
+ For `llama-server` from `llama.cpp`, you can use
302
+ ```shell
303
+ llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
304
+ ```
305
+
306
+ > [!IMPORTANT]
307
+ > If you encounter the following warning
308
+ > ```
309
+ > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
310
+ > ```
311
+ > please upgrade `transformers>=4.51.0`.
312
+
313
+ > [!NOTE]
314
+ > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
315
+ > We advise adding the `rope_scaling` configuration only when processing long contexts is required.
316
+ > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
317
+
318
+ > [!NOTE]
319
+ > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
320
+
321
+ > [!TIP]
322
+ > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
323
+
324
+ ## Best Practices
325
+
326
+ To achieve optimal performance, we recommend the following settings:
327
+
328
+ 1. **Sampling Parameters**:
329
+ - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
330
+ - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
331
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
332
+
333
+ 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
334
+
335
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
336
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
337
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
338
+
339
+ 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
340
+
341
+ ### Citation
342
+
343
+ If you find our work helpful, feel free to give us a cite.
344
+
345
+ ```
346
+ @misc{qwen3,
347
+ title = {Qwen3},
348
+ url = {https://qwenlm.github.io/blog/qwen3/},
349
+ author = {Qwen Team},
350
+ month = {April},
351
+ year = {2025}
352
+ }
353
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
27
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
28
+ {%- elif message.role == "assistant" %}
29
+ {%- set content = message.content %}
30
+ {%- set reasoning_content = '' %}
31
+ {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
32
+ {%- set reasoning_content = message.reasoning_content %}
33
+ {%- else %}
34
+ {%- if '</think>' in message.content %}
35
+ {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
36
+ {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
37
+ {%- endif %}
38
+ {%- endif %}
39
+ {%- if loop.index0 > ns.last_query_index %}
40
+ {%- if loop.last or (not loop.last and reasoning_content) %}
41
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
42
+ {%- else %}
43
+ {{- '<|im_start|>' + message.role + '\n' + content }}
44
+ {%- endif %}
45
+ {%- else %}
46
+ {{- '<|im_start|>' + message.role + '\n' + content }}
47
+ {%- endif %}
48
+ {%- if message.tool_calls %}
49
+ {%- for tool_call in message.tool_calls %}
50
+ {%- if (loop.first and content) or (not loop.first) %}
51
+ {{- '\n' }}
52
+ {%- endif %}
53
+ {%- if tool_call.function %}
54
+ {%- set tool_call = tool_call.function %}
55
+ {%- endif %}
56
+ {{- '<tool_call>\n{"name": "' }}
57
+ {{- tool_call.name }}
58
+ {{- '", "arguments": ' }}
59
+ {%- if tool_call.arguments is string %}
60
+ {{- tool_call.arguments }}
61
+ {%- else %}
62
+ {{- tool_call.arguments | tojson }}
63
+ {%- endif %}
64
+ {{- '}\n</tool_call>' }}
65
+ {%- endfor %}
66
+ {%- endif %}
67
+ {{- '<|im_end|>\n' }}
68
+ {%- elif message.role == "tool" %}
69
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
70
+ {{- '<|im_start|>user' }}
71
+ {%- endif %}
72
+ {{- '\n<tool_response>\n' }}
73
+ {{- message.content }}
74
+ {{- '\n</tool_response>' }}
75
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
76
+ {{- '<|im_end|>\n' }}
77
+ {%- endif %}
78
+ {%- endif %}
79
+ {%- endfor %}
80
+ {%- if add_generation_prompt %}
81
+ {{- '<|im_start|>assistant\n' }}
82
+ {%- if enable_thinking is defined and enable_thinking is false %}
83
+ {{- '<think>\n\n</think>\n\n' }}
84
+ {%- endif %}
85
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SDARMoeForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_sdar_moe.SDARMoeConfig",
7
+ "AutoModel": "modeling_sdar_moe.SDARMoeModel",
8
+ "AutoModelForCausalLM": "modeling_sdar_moe.SDARMoeForCausalLM"
9
+ },
10
+ "attention_bias": false,
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 151643,
13
+ "decoder_sparse_step": 1,
14
+ "eos_token_id": 151645,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 2048,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 6144,
20
+ "max_position_embeddings": 40960,
21
+ "max_window_layers": 48,
22
+ "mlp_only_layers": [],
23
+ "model_type": "sdar_moe",
24
+ "moe_intermediate_size": 768,
25
+ "norm_topk_prob": true,
26
+ "num_attention_heads": 32,
27
+ "num_experts": 128,
28
+ "num_experts_per_tok": 8,
29
+ "num_hidden_layers": 48,
30
+ "num_key_value_heads": 4,
31
+ "output_router_logits": false,
32
+ "rms_norm_eps": 1e-06,
33
+ "rope_scaling": null,
34
+ "rope_theta": 1000000.0,
35
+ "router_aux_loss_coef": 0.001,
36
+ "sliding_window": null,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.51.0",
40
+ "use_cache": true,
41
+ "use_sliding_window": false,
42
+ "vocab_size": 153216
43
+ }
configuration_sdar_moe.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """SDARMoE model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class SDARMoeConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`SDARMoeModel`]. It is used to instantiate a
28
+ SDARMoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of [JetLM/SDAR-1.7B-Chat](https://huggingface.co/JetLM/SDAR-1.7B-Chat).
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 151936):
37
+ Vocabulary size of the SDARMoE model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`SDARMoeModel`]
39
+ hidden_size (`int`, *optional*, defaults to 2048):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 6144):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 24):
44
+ Number of hidden layers in the Transformer encoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ num_key_value_heads (`int`, *optional*, defaults to 4):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
54
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
55
+ The non-linear activation function (function or string) in the decoder.
56
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
57
+ The maximum sequence length that this model might ever be used with.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
61
+ The epsilon used by the rms normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
66
+ Whether the model's input and output word embeddings should be tied.
67
+ rope_theta (`float`, *optional*, defaults to 10000.0):
68
+ The base period of the RoPE embeddings.
69
+ rope_scaling (`Dict`, *optional*):
70
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
71
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
72
+ accordingly.
73
+ Expected contents:
74
+ `rope_type` (`str`):
75
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
76
+ 'llama3'], with 'default' being the original RoPE implementation.
77
+ `factor` (`float`, *optional*):
78
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
79
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
80
+ original maximum pre-trained length.
81
+ `original_max_position_embeddings` (`int`, *optional*):
82
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
83
+ pretraining.
84
+ `attention_factor` (`float`, *optional*):
85
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
86
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
87
+ `factor` field to infer the suggested value.
88
+ `beta_fast` (`float`, *optional*):
89
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
90
+ ramp function. If unspecified, it defaults to 32.
91
+ `beta_slow` (`float`, *optional*):
92
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
93
+ ramp function. If unspecified, it defaults to 1.
94
+ `short_factor` (`List[float]`, *optional*):
95
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `long_factor` (`List[float]`, *optional*):
99
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
100
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
101
+ size divided by the number of attention heads divided by 2
102
+ `low_freq_factor` (`float`, *optional*):
103
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
104
+ `high_freq_factor` (`float`, *optional*):
105
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
106
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
107
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
108
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
109
+ Whether to use sliding window attention.
110
+ sliding_window (`int`, *optional*, defaults to 4096):
111
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
112
+ max_window_layers (`int`, *optional*, defaults to 28):
113
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
114
+ attention_dropout (`float`, *optional*, defaults to 0.0):
115
+ The dropout ratio for the attention probabilities.
116
+ decoder_sparse_step (`int`, *optional*, defaults to 1):
117
+ The frequency of the MoE layer.
118
+ moe_intermediate_size (`int`, *optional*, defaults to 768):
119
+ Intermediate size of the routed expert.
120
+ num_experts_per_tok (`int`, *optional*, defaults to 8):
121
+ Number of selected experts.
122
+ num_experts (`int`, *optional*, defaults to 128):
123
+ Number of routed experts.
124
+ norm_topk_prob (`bool`, *optional*, defaults to `False`):
125
+ Whether to normalize the topk probabilities.
126
+ output_router_logits (`bool`, *optional*, defaults to `False`):
127
+ Whether or not the router logits should be returned by the model. Enabling this will also
128
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
129
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
130
+ The aux loss factor for the total loss.
131
+ mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
132
+ Indicate which layers use SDARMoeMLP rather than SDARMoeSparseMoeBlock
133
+ The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
134
+ If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
135
+
136
+ ```python
137
+ >>> from transformers import SDARMoeModel, SDARMoeConfig
138
+
139
+ >>> # Initializing a SDARMoE style configuration
140
+ >>> configuration = SDARMoeConfig()
141
+
142
+ >>> # Initializing a model from the SDAR-15B-A2B" style configuration
143
+ >>> model = SDARMoeModel(configuration)
144
+
145
+ >>> # Accessing the model configuration
146
+ >>> configuration = model.config
147
+ ```"""
148
+
149
+ model_type = "sdar_moe"
150
+ keys_to_ignore_at_inference = ["past_key_values"]
151
+
152
+ # Default tensor parallel plan for base model `SDARMoe`
153
+ base_model_tp_plan = {
154
+ "layers.*.self_attn.q_proj": "colwise",
155
+ "layers.*.self_attn.k_proj": "colwise",
156
+ "layers.*.self_attn.v_proj": "colwise",
157
+ "layers.*.self_attn.o_proj": "rowwise",
158
+ "layers.*.mlp.experts.*.gate_proj": "colwise",
159
+ "layers.*.mlp.experts.*.up_proj": "colwise",
160
+ "layers.*.mlp.experts.*.down_proj": "rowwise",
161
+ "layers.*.mlp.gate_proj": "colwise",
162
+ "layers.*.mlp.up_proj": "colwise",
163
+ "layers.*.mlp.down_proj": "rowwise",
164
+ }
165
+ base_model_pp_plan = {
166
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
167
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
168
+ "norm": (["hidden_states"], ["hidden_states"]),
169
+ }
170
+
171
+ def __init__(
172
+ self,
173
+ vocab_size=151936,
174
+ hidden_size=2048,
175
+ intermediate_size=6144,
176
+ num_hidden_layers=24,
177
+ num_attention_heads=32,
178
+ num_key_value_heads=4,
179
+ hidden_act="silu",
180
+ max_position_embeddings=32768,
181
+ initializer_range=0.02,
182
+ rms_norm_eps=1e-6,
183
+ use_cache=True,
184
+ tie_word_embeddings=False,
185
+ rope_theta=10000.0,
186
+ rope_scaling=None,
187
+ attention_bias=False,
188
+ use_sliding_window=False,
189
+ sliding_window=4096,
190
+ max_window_layers=28,
191
+ attention_dropout=0.0,
192
+ decoder_sparse_step=1,
193
+ moe_intermediate_size=768,
194
+ num_experts_per_tok=8,
195
+ num_experts=128,
196
+ norm_topk_prob=False,
197
+ output_router_logits=False,
198
+ router_aux_loss_coef=0.001,
199
+ mlp_only_layers=None,
200
+ **kwargs,
201
+ ):
202
+ self.vocab_size = vocab_size
203
+ self.max_position_embeddings = max_position_embeddings
204
+ self.hidden_size = hidden_size
205
+ self.intermediate_size = intermediate_size
206
+ self.num_hidden_layers = num_hidden_layers
207
+ self.num_attention_heads = num_attention_heads
208
+ self.use_sliding_window = use_sliding_window
209
+ self.sliding_window = sliding_window if use_sliding_window else None
210
+ self.max_window_layers = max_window_layers
211
+
212
+ self.num_key_value_heads = num_key_value_heads
213
+ self.hidden_act = hidden_act
214
+ self.initializer_range = initializer_range
215
+ self.rms_norm_eps = rms_norm_eps
216
+ self.use_cache = use_cache
217
+ self.rope_theta = rope_theta
218
+ self.rope_scaling = rope_scaling
219
+ self.attention_bias = attention_bias
220
+ self.attention_dropout = attention_dropout
221
+ # Validate the correctness of rotary position embeddings parameters
222
+ # BC: if there is a 'type' field, move it to 'rope_type'.
223
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
224
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
225
+ rope_config_validation(self)
226
+
227
+ # MoE arguments
228
+ self.decoder_sparse_step = decoder_sparse_step
229
+ self.moe_intermediate_size = moe_intermediate_size
230
+ self.num_experts_per_tok = num_experts_per_tok
231
+ self.num_experts = num_experts
232
+ self.norm_topk_prob = norm_topk_prob
233
+ self.output_router_logits = output_router_logits
234
+ self.router_aux_loss_coef = router_aux_loss_coef
235
+ self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
236
+
237
+ super().__init__(
238
+ tie_word_embeddings=tie_word_embeddings,
239
+ **kwargs,
240
+ )
241
+
242
+
243
+ __all__ = ["SDARMoeConfig"]
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.0"
13
+ }
layer-0-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54fb83a70dfe9b769e3129262b3c887b4c7d65900675918b7e68955696bb9c20
3
+ size 1246289008
layer-1-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33fe5471a3ecfacec14507ac6fe0842e9e1754d0c69c33ec597429ccef998ffd
3
+ size 1246289008
layer-10-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abf307cc4ae0ac1f2f2edf6b734d0a710b92c60c3187942afae1294341868b0
3
+ size 1246289400
layer-11-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d94a1a7171cf81c2e06918c3e4b9b92f4cc73e40af0cc4922a738845060346d6
3
+ size 1246289400
layer-12-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ef71562d751b7c7fbafa20eeea595f3662b3442d7d58d5c865b393d2454ad42
3
+ size 1246289400
layer-13-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30305c61db1e87afecd8971df67455c50aef4d022e0944c29749420b27640b6d
3
+ size 1246289400
layer-14-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97314391f23871f824f191c5cd544eb004e3cd97d236200f02f9e6de9bc66136
3
+ size 1246289400
layer-15-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f6811b4a17b3f19d30f12c56f51c0d69a029dac6707b584e76deab2af05525
3
+ size 1246289400
layer-16-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb5f7c1477a6c40288ad1ae6bb4a6da822a193f50544f1e0cf27f1fbdd971f55
3
+ size 1246289400
layer-17-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b48956d75d480ffdff07993c139a860cfeff35af9c3057bd741fcb2d0688269
3
+ size 1246289400
layer-18-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56ab84c6b6c1131c3fdd84f6aed19106865360324ef64fceb55dfabc31632992
3
+ size 1246289400
layer-19-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b9a3b63e445fa28df5b533c67de337bbe1f882c95482709030067cae36e94f1
3
+ size 1246289400
layer-2-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28a251d9086d881350fdeb6c4fcf5a8c4b92558affc7f46a571910158706f924
3
+ size 1246289008
layer-20-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4133525e0d50b1c982a5bcdd062886f0ef32a7de8b89f51e49ee39e61a0d4d01
3
+ size 1246289400
layer-21-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2596e4c7842680a12ff2fd3fccddaa6ac01c531813f0b960d46915a7fa5617
3
+ size 1246289400
layer-22-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85a38f7800e895205ddad3db7181680a122a4db32e11f5cadbff36a8ab34fa17
3
+ size 1246289400
layer-23-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ff5519aa652caafe257a9ee6be6d1ac1628b0d703df0e8f17b9244e2506c18e
3
+ size 1246289400
layer-24-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5184c2e9026f57575491aba5774add7a8d5db4bfae0287abba98eddfc31953a7
3
+ size 1246289400
layer-25-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7be57e1965afa9daccfb206db21f575f7ed4ee3e2e5f76788ad945e626af98db
3
+ size 1246289400
layer-26-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b7efbe7e799f5a5dcebc2a7bfa6f5a8d352afebeb56772f0871880f04753a9
3
+ size 1246289400
layer-27-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97c11cb0fd17de208e2151112883e977f14a0c70341e067a00b831be5d3d3704
3
+ size 1246289400
layer-28-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bf9a9e40eece1dd2f082234e2678bd906c6c3a2aa3a5c71bfe5df2bdab3279e
3
+ size 1246289400
layer-29-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bada57dedfec6569ef306ecf3976bce82d1ead1967bc645a3d66bae0882046ae
3
+ size 1246289400
layer-3-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eada5a41f5d1c0104c40edd894576ac04fd1e5448bfbaf8389d614d0bfc72212
3
+ size 1246289008
layer-30-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203b0d919b2984bb5c671048bf68ce634b98a654773698bc97f693e868dfaa44
3
+ size 1246289400
layer-31-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace5c982e074413bb4795c259011140948e763def7d890804404b52952615094
3
+ size 1246289400
layer-32-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41430745c20d07427d4d9bd2eb68788945c5e43521267b73aa2ce5303afb134c
3
+ size 1246289400
layer-33-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5026c2eba524c10f156ebe7937fbed06f1347a3cc0e4e2384bf76a267c2e9f7
3
+ size 1246289400
layer-34-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9452de9f54aa094d4be119e39b4df111be8dd1aaada7317b870b20c651831392
3
+ size 1246289400
layer-35-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:304eba8d6ad02ab2bbad7fd5df29379a46ed9c4cf6b93e9f6308aa9e5516716b
3
+ size 1246289400
layer-36-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ff8962ede6e095eb3cf1234af7f1b4159e43bdd63dc668df6e7b2ad7bddde6
3
+ size 1246289400
layer-37-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:670273e920e5d352f708700f4e5359ee2fb1197335deae508ace76095cbba786
3
+ size 1246289400
layer-38-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc5a4e9195af0bd2ff8775a6fe8f11b8eecd566c244814b5bd3f883f0d05f5a
3
+ size 1246289400
layer-39-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:642e91418cc3c785df1ce0c017eae6dd5b9c0ef145f2fd5bb7b6203b87ce29de
3
+ size 1246289400
layer-4-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca41c09840b2e9fc49ce203b2c225608d985ada7330fe5c64ea600fbe985655
3
+ size 1246289008
layer-40-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dc1e3c86a23d12506d715f9cb9b65a4fa4195539dfc839e0b0a6aec4b2638d1
3
+ size 1246289400
layer-41-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847fbe7825d9ab8ce4579b6fd9d6c540d78ea3f6982d8e629468551d71347c8c
3
+ size 1246289400
layer-42-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b7dd4e0e5337e409d3b2b446ba194e2ae61861b03c214ca124b762d8466988c
3
+ size 1246289400
layer-43-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589f6ac1e5b710965e27dd44c58f6140ce7ba2f71806917443d9b1eec7de54fd
3
+ size 1246289400
layer-44-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:780c7cded99503c8b6decf752aaff3d73d08986cebd75f3d6c6652028ddfdff4
3
+ size 1246289400
layer-45-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a2634d0c4710af499a29ed5cdcc0fa09766f37c770d60df18921858c557521
3
+ size 1246289400
layer-46-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3c481ac0e3203b29fd708f395cb7745b399b636185638b086954a2df71eb4aa
3
+ size 1246289400
layer-47-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4db693f226302e9a6f7818499a2f954d58d0170cea13b95b83dabb527afa6480
3
+ size 1246289400