Update handler.py
Browse files- handler.py +6 -7
handler.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
-
from typing import
|
| 2 |
from pyannote.audio import Pipeline
|
| 3 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 4 |
import torch
|
| 5 |
import base64
|
| 6 |
import numpy as np
|
|
@@ -22,16 +21,16 @@ class EndpointHandler():
|
|
| 22 |
"""
|
| 23 |
# process input
|
| 24 |
inputs = data.pop("inputs", data)
|
| 25 |
-
parameters = data.pop("parameters", None) #
|
| 26 |
|
| 27 |
# decode the base64 audio data
|
| 28 |
audio_data = base64.b64decode(inputs)
|
| 29 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
| 30 |
-
|
| 31 |
# prepare pynannote input
|
| 32 |
-
audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)
|
| 33 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
| 34 |
-
|
| 35 |
# apply pretrained pipeline
|
| 36 |
# pass inputs with all kwargs in data
|
| 37 |
if parameters is not None:
|
|
@@ -45,4 +44,4 @@ class EndpointHandler():
|
|
| 45 |
for segment, _, label in diarization.itertracks(yield_label=True)
|
| 46 |
]
|
| 47 |
|
| 48 |
-
return {"diarization": processed_diarization}
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
from pyannote.audio import Pipeline
|
|
|
|
| 3 |
import torch
|
| 4 |
import base64
|
| 5 |
import numpy as np
|
|
|
|
| 21 |
"""
|
| 22 |
# process input
|
| 23 |
inputs = data.pop("inputs", data)
|
| 24 |
+
parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5
|
| 25 |
|
| 26 |
# decode the base64 audio data
|
| 27 |
audio_data = base64.b64decode(inputs)
|
| 28 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
| 29 |
+
|
| 30 |
# prepare pynannote input
|
| 31 |
+
audio_tensor= torch.from_numpy(audio_nparray).float().unsqueeze(0)
|
| 32 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
| 33 |
+
|
| 34 |
# apply pretrained pipeline
|
| 35 |
# pass inputs with all kwargs in data
|
| 36 |
if parameters is not None:
|
|
|
|
| 44 |
for segment, _, label in diarization.itertracks(yield_label=True)
|
| 45 |
]
|
| 46 |
|
| 47 |
+
return {"diarization": processed_diarization}
|