Lyte commited on
Commit
fc9577d
·
verified ·
1 Parent(s): d611e31

update readme for proper name versioning

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -17,8 +17,8 @@ pipeline_tag: text-to-audio
17
 
18
  [![Buy Me A Coffee](https://img.shields.io/badge/Ko--fi-Support%20My%20Work-FF5E5B?style=for-the-badge&logo=ko-fi&logoColor=white)](https://ko-fi.com/lyte)
19
  [![Dataset](https://img.shields.io/badge/Dataset-KandirResearch/Speech2Speech-blue)](https://huggingface.co/datasets/KandirResearch/Speech2Speech)
20
- [![Model](https://img.shields.io/badge/Model-KandirResearch/CiSiMi-green)](https://huggingface.co/KandirResearch/CiSiMi)
21
- [![Demo](https://img.shields.io/badge/Demo-KandirResearch/CiSiMi--At--Home-orange)](https://huggingface.co/spaces/KandirResearch/CiSiMi-At-Home)
22
 
23
  ## Overview
24
 
@@ -36,7 +36,7 @@ This project demonstrates the power of open-source tools to create accessible sp
36
  - **Pipeline**: Text-to-audio
37
  - **Parameters**: 500M
38
  - **Training Dataset Size**: ~15k samples
39
- - **Future Goals**: Scale to 200k-500k dataset with multi-turn conversation using a 1B parameter model
40
 
41
  ### Training Methodology
42
 
@@ -77,20 +77,20 @@ from outetts.version.playback import ModelOutput
77
 
78
  # Download the model
79
  model_path = hf_hub_download(
80
- repo_id="Lyte/CiSiMi",
81
  filename="unsloth.Q8_0.gguf",
82
  )
83
 
84
  # Configure the model
85
  model_config = outetts.GGUFModelConfig_v2(
86
  model_path=model_path,
87
- tokenizer_path="Lyte/CiSiMi",
88
  )
89
 
90
  # Initialize components
91
  interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
92
  audio_codec = AudioCodec()
93
- prompt_processor = PromptProcessor("Lyte/CiSiMi")
94
 
95
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
96
  gguf_model = interface.get_model()
 
17
 
18
  [![Buy Me A Coffee](https://img.shields.io/badge/Ko--fi-Support%20My%20Work-FF5E5B?style=for-the-badge&logo=ko-fi&logoColor=white)](https://ko-fi.com/lyte)
19
  [![Dataset](https://img.shields.io/badge/Dataset-KandirResearch/Speech2Speech-blue)](https://huggingface.co/datasets/KandirResearch/Speech2Speech)
20
+ [![Model](https://img.shields.io/badge/Model-KandirResearch/CiSiMi-v0.1-green)](https://huggingface.co/KandirResearch/CiSiMi-v0.1)
21
+ [![Demo](https://img.shields.io/badge/Demo-KandirResearch/CiSiMi-v0.1--At--Home-orange)](https://huggingface.co/spaces/KandirResearch/CiSiMi-At-Home)
22
 
23
  ## Overview
24
 
 
36
  - **Pipeline**: Text-to-audio
37
  - **Parameters**: 500M
38
  - **Training Dataset Size**: ~15k samples
39
+ - **Future Goals**: Scale to 200k-500k dataset with multi-turn conversation using both a 500M and a 1B parameter model variants, plus adding streaming for realtime.
40
 
41
  ### Training Methodology
42
 
 
77
 
78
  # Download the model
79
  model_path = hf_hub_download(
80
+ repo_id="KandirResearch/CiSiMi-v0.1",
81
  filename="unsloth.Q8_0.gguf",
82
  )
83
 
84
  # Configure the model
85
  model_config = outetts.GGUFModelConfig_v2(
86
  model_path=model_path,
87
+ tokenizer_path="KandirResearch/CiSiMi-v0.1",
88
  )
89
 
90
  # Initialize components
91
  interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
92
  audio_codec = AudioCodec()
93
+ prompt_processor = PromptProcessor("KandirResearch/CiSiMi-v0.1")
94
 
95
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
96
  gguf_model = interface.get_model()