update readme for proper name versioning
Browse files
README.md
CHANGED
|
@@ -17,8 +17,8 @@ pipeline_tag: text-to-audio
|
|
| 17 |
|
| 18 |
[](https://ko-fi.com/lyte)
|
| 19 |
[](https://huggingface.co/datasets/KandirResearch/Speech2Speech)
|
| 20 |
-
[](https://huggingface.co/KandirResearch/CiSiMi)
|
| 21 |
-
[](https://huggingface.co/spaces/KandirResearch/CiSiMi-At-Home)
|
| 22 |
|
| 23 |
## Overview
|
| 24 |
|
|
@@ -36,7 +36,7 @@ This project demonstrates the power of open-source tools to create accessible sp
|
|
| 36 |
- **Pipeline**: Text-to-audio
|
| 37 |
- **Parameters**: 500M
|
| 38 |
- **Training Dataset Size**: ~15k samples
|
| 39 |
-
- **Future Goals**: Scale to 200k-500k dataset with multi-turn conversation using a 1B parameter model
|
| 40 |
|
| 41 |
### Training Methodology
|
| 42 |
|
|
@@ -77,20 +77,20 @@ from outetts.version.playback import ModelOutput
|
|
| 77 |
|
| 78 |
# Download the model
|
| 79 |
model_path = hf_hub_download(
|
| 80 |
-
repo_id="
|
| 81 |
filename="unsloth.Q8_0.gguf",
|
| 82 |
)
|
| 83 |
|
| 84 |
# Configure the model
|
| 85 |
model_config = outetts.GGUFModelConfig_v2(
|
| 86 |
model_path=model_path,
|
| 87 |
-
tokenizer_path="
|
| 88 |
)
|
| 89 |
|
| 90 |
# Initialize components
|
| 91 |
interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
|
| 92 |
audio_codec = AudioCodec()
|
| 93 |
-
prompt_processor = PromptProcessor("
|
| 94 |
|
| 95 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 96 |
gguf_model = interface.get_model()
|
|
|
|
| 17 |
|
| 18 |
[](https://ko-fi.com/lyte)
|
| 19 |
[](https://huggingface.co/datasets/KandirResearch/Speech2Speech)
|
| 20 |
+
[](https://huggingface.co/KandirResearch/CiSiMi-v0.1)
|
| 21 |
+
[](https://huggingface.co/spaces/KandirResearch/CiSiMi-At-Home)
|
| 22 |
|
| 23 |
## Overview
|
| 24 |
|
|
|
|
| 36 |
- **Pipeline**: Text-to-audio
|
| 37 |
- **Parameters**: 500M
|
| 38 |
- **Training Dataset Size**: ~15k samples
|
| 39 |
+
- **Future Goals**: Scale to 200k-500k dataset with multi-turn conversation using both a 500M and a 1B parameter model variants, plus adding streaming for realtime.
|
| 40 |
|
| 41 |
### Training Methodology
|
| 42 |
|
|
|
|
| 77 |
|
| 78 |
# Download the model
|
| 79 |
model_path = hf_hub_download(
|
| 80 |
+
repo_id="KandirResearch/CiSiMi-v0.1",
|
| 81 |
filename="unsloth.Q8_0.gguf",
|
| 82 |
)
|
| 83 |
|
| 84 |
# Configure the model
|
| 85 |
model_config = outetts.GGUFModelConfig_v2(
|
| 86 |
model_path=model_path,
|
| 87 |
+
tokenizer_path="KandirResearch/CiSiMi-v0.1",
|
| 88 |
)
|
| 89 |
|
| 90 |
# Initialize components
|
| 91 |
interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
|
| 92 |
audio_codec = AudioCodec()
|
| 93 |
+
prompt_processor = PromptProcessor("KandirResearch/CiSiMi-v0.1")
|
| 94 |
|
| 95 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 96 |
gguf_model = interface.get_model()
|