--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers datasets: - KarteeMonkey/Demo tags: - Game - Moderation - art - code --- ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yChKP0JSFHLs0wiHD9hFf.png) # appy-mod-beta1 > **`appy-mod-beta1`** is a **vision-language encoder model** fine-tuned from `siglip2-base-patch16-224` for **binary image classification**. The model is trained to perform **game content moderation**, specifically classifying visual content as either **safe (good)** or **unsafe (bad)**. It utilizes the `SiglipForImageClassification` architecture. > \[!note] > SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features > [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786) ```py Classification Report: precision recall f1-score support bad 0.9763 0.9140 0.9441 1755 good 0.9279 0.9803 0.9534 1983 accuracy 0.9492 3738 macro avg 0.9521 0.9471 0.9487 3738 weighted avg 0.9506 0.9492 0.9490 3738 ``` ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/683ff3d6ed4395669d10d6d5/EEX_muJTmjfRLtCIqt2Cc.png) --- ## Label Space: 2 Classes ``` Class 0: bad (Unsafe content) Class 1: good (Safe content) ``` --- ## Install Dependencies ```bash pip install transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "KarteeMonkey/appy-mod-beta1" # Update this if using a different path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "bad", "1": "good" } def classify_watermark(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_watermark, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Game Anomaly Detection"), title="Game Anomaly Detection SigLIP2", description="Upload an image to detect whether it contains a anomaly." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use `appy-mod-beta1` is designed for: * **Game Content Moderation** – Automated moderation of user-generated or in-game visual content. * **Parental Control Tools** – Supports identifying unsafe or inappropriate content in children’s games. * **Online Game Platforms** – Enables scalable and automatic screening of images uploaded by users. * **Community Safety** – Helps maintain safe and compliant visual environments in multiplayer games and forums. * **AI Moderation Research** – A sample project for applying vision-language models to safety-critical applications.