KingTechnician commited on
Commit
01d2670
·
verified ·
1 Parent(s): 6163aae

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +54 -182
README.md CHANGED
@@ -1,199 +1,71 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+
2
  ---
3
+ language: en
4
+ tags:
5
+ - text-classification
6
+ - osmosis
7
+ - education
8
+ - coverage-classification
9
+ datasets:
10
+ - custom
11
+ metrics:
12
+ - accuracy
13
+ - f1
14
+ base_model: distilbert-base-uncased
15
  ---
16
 
17
+ # Osmosis Coverage Classifier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ This model classifies educational content coverage into three categories: low, fair, and satisfactory.
20
 
21
+ ## Model Description
22
 
23
+ - **Base Model**: distilbert-base-uncased
24
+ - **Task**: Multi-class text classification
25
+ - **Classes**: low (0), fair (1), satisfactory (2)
26
+ - **Training Data**: Custom osmosis dataset
27
 
28
+ ## Performance
29
 
30
+ - **Overall Test Accuracy**: 0.7600
31
+ - **Macro F1 Score**: 0.7584
32
+ - **Macro Precision**: 0.7571
33
+ - **Macro Recall**: 0.7600
34
 
35
+ ### Per-Class Performance
36
+ - **Low**: Precision: 0.8897, Recall: 0.9240, F1: 0.9065
37
+ - **Fair**: Precision: 0.6577, Recall: 0.6365, F1: 0.6469
38
+ - **Satisfactory**: Precision: 0.7239, Recall: 0.7193, F1: 0.7216
39
 
40
+ ## Usage
41
 
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
44
+ import torch
45
 
46
+ # Load model and tokenizer
47
+ tokenizer = AutoTokenizer.from_pretrained("KingTechnician/bert-osmosis-coverage-v2")
48
+ model = AutoModelForSequenceClassification.from_pretrained("KingTechnician/bert-osmosis-coverage-v2")
49
 
50
+ # Example usage
51
+ objective = "Your learning objective here"
52
+ response = "The response text to classify"
53
 
54
+ inputs = tokenizer(objective, response, return_tensors="pt", padding=True, truncation=True)
55
+ with torch.no_grad():
56
+ outputs = model(**inputs)
57
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
58
+ predicted_class = torch.argmax(predictions, dim=-1).item()
59
+
60
+ # Map prediction to label
61
+ id2label = {0: "low", 1: "fair", 2: "satisfactory"}
62
+ predicted_label = id2label[predicted_class]
63
+ print(f"Predicted coverage: {predicted_label}")
64
+ ```
65
 
66
  ## Training Details
67
 
68
+ - **Learning Rate**: 2e-5
69
+ - **Batch Size**: 64
70
+ - **Epochs**: 3
71
+ - **Weight Decay**: 0.01