File size: 5,017 Bytes
c1a41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3c0032
c1a41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3c0032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
import glog
import torch
from transformers import AutoTokenizer
from model.version import MODEL_VERSION
from model.llama import LlamaForCausalLM as llama_fuse
from model.mistral import MistralForCausalLM
from lib import codebook
from lib.utils.unsafe_import import model_from_hf_path
import time

torch.set_grad_enabled(False)

parser = argparse.ArgumentParser()
parser.add_argument('--quantized_path', type=str)
parser.add_argument('--hf_output_path', type=str)


def unpack_quip(module, saved_layer, codebook_id, codesz):
    (m, n) = saved_layer['Qidxs'].shape
    if codebook_id in codebook.cache_permute_set:
        module.Qidxs.copy_(saved_layer['Qidxs'].view(m, n // codesz,
                                                     codesz).permute(1, 0,
                                                                     2).reshape(m, n).contiguous())
    else:
        module.Qidxs.copy_(saved_layer['Qidxs'])

    if module.rank > 0:
        module.A.copy_(saved_layer['A'])
        module.B.copy_(saved_layer['B'])
    module.SU.copy_(saved_layer['SU'])
    module.SV.copy_(saved_layer['SV'])
    if module.rescale_WH:
        module.scaleWH.copy_(saved_layer['scaleWH'])

    module.codebook_id.copy_(codebook_id)


def main(args):
    assert os.path.exists(args.quantized_path)
    saved_config = torch.load(os.path.join(args.quantized_path, 'config.pt'))
    model_config = saved_config['model_config']

    codebook_id = codebook.get_id(model_config.quip_params['codebook'])
    codesz = model_config.quip_params['codesz']

    tokenizer = AutoTokenizer.from_pretrained(model_config._name_or_path)

    model_type = model_config.model_type
    model_config.quip_params['model_version'] = MODEL_VERSION

    if model_type == 'llama':
        model_cls = llama_fuse
    elif model_type == 'mistral':
        model_cls = MistralForCausalLM
    else:
        raise Exception

    model = model_cls.from_pretrained(model_config._name_or_path,
                                      torch_dtype='auto',
                                      low_cpu_mem_usage=True,
                                      config=model_config).half()

    for ii in range(len(model.model.layers)):
        glog.info(f'updating layer {ii}')

        layer = model.model.layers[ii]
        cpu = torch.device('cpu')

        glog.info(f'loading layer {ii} qkv')
        saved_layer = torch.load(f'{args.quantized_path}/{ii}_qkv.pt', map_location=cpu)
        layer.self_attn.qkv_proj.fuse_scales[0].copy_(saved_layer['W_q_scale'])
        layer.self_attn.qkv_proj.fuse_scales[1].copy_(saved_layer['W_k_scale'])
        layer.self_attn.qkv_proj.fuse_scales[2].copy_(saved_layer['W_v_scale'])
        layer.self_attn.qkv_proj.Wscale.copy_(saved_layer['Wscale'])
        unpack_quip(layer.self_attn.qkv_proj, saved_layer, codebook_id, codesz)

        glog.info(f'loading layer {ii} up')
        saved_layer = torch.load(f'{args.quantized_path}/{ii}_up.pt', map_location=cpu)
        layer.mlp.upgate_proj.fuse_scales[0].copy_(saved_layer['W_up_scale'])
        layer.mlp.upgate_proj.fuse_scales[1].copy_(saved_layer['W_gate_scale'])
        layer.mlp.upgate_proj.Wscale.copy_(saved_layer['Wscale'])
        unpack_quip(layer.mlp.upgate_proj, saved_layer, codebook_id, codesz)

        glog.info(f'loading layer {ii} o')
        saved_layer = torch.load(f'{args.quantized_path}/{ii}_o.pt', map_location=cpu)
        layer.self_attn.o_proj.Wscale.copy_(saved_layer['W_o_scale'] * saved_layer['Wscale'])
        unpack_quip(layer.self_attn.o_proj, saved_layer, codebook_id, codesz)

        glog.info(f'loading layer {ii} down')
        saved_layer = torch.load(f'{args.quantized_path}/{ii}_down.pt', map_location=cpu)
        layer.mlp.down_proj.Wscale.copy_(saved_layer['W_down_scale'] * saved_layer['Wscale'])
        if model_config.quip_params['outlier_channel_split']:
            layer.mlp.down_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
        unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)

    glog.info(f'saving model...')
    model.save_pretrained(args.hf_output_path, safe_serialization=True)

    del model

    model, _ = model_from_hf_path(args.hf_output_path, use_cuda_graph=False)

    glog.info('successfully loaded hfized model')

    glog.info('generating some text...')

    start = time.time()
    prompt = 'It is a truth universally acknowledged that'
    inputs = tokenizer(prompt, return_tensors='pt')
    outputs = model.generate(input_ids=inputs['input_ids'].cuda(),
                             attention_mask=inputs['attention_mask'].cuda(),
                             max_new_tokens=64,
                             return_dict_in_generate=True)
    token = outputs.sequences[0, :]
    output_str = tokenizer.decode(token)
    glog.info(output_str)
    glog.info(f'elapsed: {time.time() - start}')


if __name__ == '__main__':
    torch.set_grad_enabled(False)
    torch.manual_seed(0)
    args = parser.parse_args()
    main(args)