Commit
·
23cef86
1
Parent(s):
33d9657
initial release
Browse files- README.md +29 -0
- config.json +0 -0
- maker.py +133 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- ud.py +197 -0
README.md
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- "pt"
|
| 4 |
+
tags:
|
| 5 |
+
- "portuguese"
|
| 6 |
+
- "token-classification"
|
| 7 |
+
- "pos"
|
| 8 |
+
- "dependency-parsing"
|
| 9 |
+
base_model: eliasjacob/ModernBERT-large-portuguese
|
| 10 |
+
datasets:
|
| 11 |
+
- "universal_dependencies"
|
| 12 |
+
license: "apache-2.0"
|
| 13 |
+
pipeline_tag: "token-classification"
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# modernbert-large-portuguese-ud-embeds
|
| 17 |
+
|
| 18 |
+
## Model Description
|
| 19 |
+
|
| 20 |
+
This is a ModernBERT model for POS-tagging and dependency-parsing, derived from [ModernBERT-large-portuguese](https://huggingface.co/eliasjacob/ModernBERT-large-portuguese).
|
| 21 |
+
|
| 22 |
+
## How to Use
|
| 23 |
+
|
| 24 |
+
```py
|
| 25 |
+
from transformers import pipeline
|
| 26 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/modernbert-large-portuguese-ud-embeds",trust_remote_code=True)
|
| 27 |
+
print(nlp("Foi quebrado pelo pelo do gato"))
|
| 28 |
+
```
|
| 29 |
+
|
config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
maker.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#! /usr/bin/python3
|
| 2 |
+
import os
|
| 3 |
+
src="eliasjacob/ModernBERT-large-portuguese"
|
| 4 |
+
tgt="KoichiYasuoka/modernbert-large-portuguese-ud-embeds"
|
| 5 |
+
url="https://github.com/UniversalDependencies/UD_Portuguese-"
|
| 6 |
+
for e in ["Bosque","GSD","PetroGold"]:
|
| 7 |
+
u=url+e
|
| 8 |
+
d=os.path.basename(u)
|
| 9 |
+
os.system("test -d "+d+" || git clone --depth=1 "+u)
|
| 10 |
+
s='BEGIN{FS=OFS="\\t";a[1]=a[2]=""};{if(NF==10){if($1~/-/&&$2~/-/)split($1,a,"-");else{if($1==a[1])$10="SpaceAfter=No";else if($1==a[2])$2="-"$2;print}}else{print;a[1]=a[2]=""}}'
|
| 11 |
+
os.system("for F in train dev test ; do nawk '"+s+"' UD_Portuguese-*/*-$F.conllu >$F.conllu ; done")
|
| 12 |
+
class UDEmbedsDataset(object):
|
| 13 |
+
def __init__(self,conllu,tokenizer,embeddings=None):
|
| 14 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
| 15 |
+
self.tokenizer=tokenizer
|
| 16 |
+
self.embeddings=embeddings
|
| 17 |
+
self.seeks=[0]
|
| 18 |
+
label=set(["SYM","SYM.","SYM|_"])
|
| 19 |
+
dep=set()
|
| 20 |
+
s=self.conllu.readline()
|
| 21 |
+
while s!="":
|
| 22 |
+
if s=="\n":
|
| 23 |
+
self.seeks.append(self.conllu.tell())
|
| 24 |
+
else:
|
| 25 |
+
w=s.split("\t")
|
| 26 |
+
if len(w)==10:
|
| 27 |
+
if w[0].isdecimal():
|
| 28 |
+
p=w[3]
|
| 29 |
+
q="" if w[5]=="_" else "|"+w[5]
|
| 30 |
+
d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7]
|
| 31 |
+
for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]:
|
| 32 |
+
label.add(k)
|
| 33 |
+
s=self.conllu.readline()
|
| 34 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
| 35 |
+
def __call__(*args):
|
| 36 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
| 37 |
+
for t in args:
|
| 38 |
+
t.label2id=lid
|
| 39 |
+
return lid
|
| 40 |
+
def __del__(self):
|
| 41 |
+
self.conllu.close()
|
| 42 |
+
__len__=lambda self:(len(self.seeks)-1)*2
|
| 43 |
+
def __getitem__(self,i):
|
| 44 |
+
self.conllu.seek(self.seeks[int(i/2)])
|
| 45 |
+
z,c,t,s,e,w,m=i%2,[],[""],"_","_",None,False
|
| 46 |
+
while t[0]!="\n":
|
| 47 |
+
t=self.conllu.readline().split("\t")
|
| 48 |
+
if len(t)==10:
|
| 49 |
+
if t[0].isdecimal():
|
| 50 |
+
if m:
|
| 51 |
+
t[1]=" "+t[1]
|
| 52 |
+
if w==None:
|
| 53 |
+
c.append(t)
|
| 54 |
+
m=t[9].find("SpaceAfter=No")
|
| 55 |
+
elif s==t[0]:
|
| 56 |
+
t[1]=w
|
| 57 |
+
t[6]="0"
|
| 58 |
+
c.append(t)
|
| 59 |
+
elif e==t[0]:
|
| 60 |
+
s=e="_"
|
| 61 |
+
w=None
|
| 62 |
+
elif z==0:
|
| 63 |
+
k=t[0].split("-")
|
| 64 |
+
if len(k)==2:
|
| 65 |
+
s,e=k
|
| 66 |
+
w=" "+t[1] if m else t[1]
|
| 67 |
+
m=t[9].find("SpaceAfter=No")
|
| 68 |
+
x=[True if t[6]=="0" or int(t[6])>int(t[0]) or sum([1 if int(c[i][6])==int(t[0]) else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)]
|
| 69 |
+
v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
| 70 |
+
if z==0:
|
| 71 |
+
ids,upos=[self.tokenizer.cls_token_id],["SYM."]
|
| 72 |
+
for i,(j,k) in enumerate(zip(v,c)):
|
| 73 |
+
if j==[]:
|
| 74 |
+
j=[self.tokenizer.unk_token_id]
|
| 75 |
+
p=k[3] if x[i] else k[3]+"."
|
| 76 |
+
ids+=j
|
| 77 |
+
upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1)
|
| 78 |
+
ids.append(self.tokenizer.sep_token_id)
|
| 79 |
+
upos.append("SYM.")
|
| 80 |
+
emb=self.embeddings
|
| 81 |
+
else:
|
| 82 |
+
import torch
|
| 83 |
+
if len(x)<127:
|
| 84 |
+
x=[True]*len(x)
|
| 85 |
+
w=(len(x)+2)*(len(x)+1)/2
|
| 86 |
+
else:
|
| 87 |
+
w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
|
| 88 |
+
for i in range(len(x)):
|
| 89 |
+
if x[i]==False and w+len(x)-i<8192:
|
| 90 |
+
x[i]=True
|
| 91 |
+
w+=len(x)-i+1
|
| 92 |
+
p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)]
|
| 93 |
+
d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c]
|
| 94 |
+
ids,upos=[-1],["SYM|_"]
|
| 95 |
+
for i in range(len(x)):
|
| 96 |
+
if x[i]:
|
| 97 |
+
ids.append(i)
|
| 98 |
+
upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_")
|
| 99 |
+
for j in range(i+1,len(x)):
|
| 100 |
+
ids.append(j)
|
| 101 |
+
upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_")
|
| 102 |
+
if w>8192 and i>0:
|
| 103 |
+
while w>8192 and upos[-1].endswith("|_"):
|
| 104 |
+
upos.pop(-1)
|
| 105 |
+
ids.pop(-1)
|
| 106 |
+
w-=1
|
| 107 |
+
ids.append(-1)
|
| 108 |
+
upos.append("SYM|_")
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
m=[]
|
| 111 |
+
for j in v:
|
| 112 |
+
if j==[]:
|
| 113 |
+
j=[self.tokenizer.unk_token_id]
|
| 114 |
+
m.append(self.embeddings[j,:].sum(axis=0))
|
| 115 |
+
m.append(self.embeddings[self.tokenizer.sep_token_id,:])
|
| 116 |
+
emb=torch.stack(m)
|
| 117 |
+
return{"inputs_embeds":emb[ids[:8192],:],"labels":[self.label2id[p] for p in upos[:8192]]}
|
| 118 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
|
| 119 |
+
from tokenizers.pre_tokenizers import Sequence,Punctuation
|
| 120 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
| 121 |
+
tkz.backend_tokenizer.pre_tokenizer=Sequence([Punctuation(),tkz.backend_tokenizer.pre_tokenizer])
|
| 122 |
+
trainDS=UDEmbedsDataset("train.conllu",tkz)
|
| 123 |
+
devDS=UDEmbedsDataset("dev.conllu",tkz)
|
| 124 |
+
testDS=UDEmbedsDataset("test.conllu",tkz)
|
| 125 |
+
lid=trainDS(devDS,testDS)
|
| 126 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
|
| 127 |
+
mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True)
|
| 128 |
+
trainDS.embeddings=mdl.get_input_embeddings().weight
|
| 129 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
| 130 |
+
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
|
| 131 |
+
trn.train()
|
| 132 |
+
trn.save_model(tgt)
|
| 133 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc56e811d16418f8000018ef672be70765f5e2ed897412183467c091d7290d92
|
| 3 |
+
size 1598942274
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<|padding|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|endoftext|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[UNK]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[CLS]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[SEP]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "[PAD]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "[MASK]",
|
| 53 |
+
"lstrip": true,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"extra_special_tokens": {},
|
| 63 |
+
"mask_token": "[MASK]",
|
| 64 |
+
"model_input_names": [
|
| 65 |
+
"input_ids",
|
| 66 |
+
"attention_mask"
|
| 67 |
+
],
|
| 68 |
+
"model_max_length": 8192,
|
| 69 |
+
"pad_token": "[PAD]",
|
| 70 |
+
"sep_token": "[SEP]",
|
| 71 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 72 |
+
"unk_token": "[UNK]"
|
| 73 |
+
}
|
ud.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy
|
| 2 |
+
from transformers import TokenClassificationPipeline
|
| 3 |
+
|
| 4 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
| 5 |
+
def __init__(self,**kwargs):
|
| 6 |
+
super().__init__(**kwargs)
|
| 7 |
+
x=self.model.config.label2id
|
| 8 |
+
y=[k for k in x if k.find("|")<0 and not k.startswith("I-")]
|
| 9 |
+
self.transition=numpy.full((len(x),len(x)),-numpy.inf)
|
| 10 |
+
self.ilabel=numpy.full(len(x),-numpy.inf)
|
| 11 |
+
self.slabel=numpy.full(len(x),-numpy.inf)
|
| 12 |
+
for k,v in x.items():
|
| 13 |
+
if k.find("|")<0:
|
| 14 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
| 15 |
+
self.transition[v,x[j]]=0
|
| 16 |
+
if k.startswith("I-"):
|
| 17 |
+
self.ilabel[v]=0
|
| 18 |
+
elif k.startswith("SYM"):
|
| 19 |
+
self.slabel[v]=0
|
| 20 |
+
def check_model_type(self,supported_models):
|
| 21 |
+
pass
|
| 22 |
+
def postprocess(self,model_outputs,**kwargs):
|
| 23 |
+
if "logits" not in model_outputs:
|
| 24 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
| 25 |
+
return self.bellman_ford_token_classification(model_outputs,**kwargs)
|
| 26 |
+
def bellman_ford_token_classification(self,model_outputs,**kwargs):
|
| 27 |
+
m=model_outputs["logits"][0].numpy()
|
| 28 |
+
x=model_outputs["offset_mapping"][0].tolist()
|
| 29 |
+
for i,(s,e) in enumerate(x):
|
| 30 |
+
if s==0 and e==0:
|
| 31 |
+
m[i]+=self.slabel
|
| 32 |
+
elif i>0 and s<e and x[i-1][1]>s:
|
| 33 |
+
m[i]+=self.ilabel
|
| 34 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
| 35 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
| 36 |
+
for i in range(m.shape[0]-1,0,-1):
|
| 37 |
+
m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
|
| 38 |
+
k=[numpy.argmax(m[0]+self.transition[0])]
|
| 39 |
+
for i in range(1,m.shape[0]):
|
| 40 |
+
k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
|
| 41 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(x,k)) if s<e]
|
| 42 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
| 43 |
+
for i,t in reversed(list(enumerate(w))):
|
| 44 |
+
p=t.pop("entity")
|
| 45 |
+
if i>0 and p.startswith("I-"):
|
| 46 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
| 47 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
| 48 |
+
elif i>0 and w[i-1]["end"]>t["start"]:
|
| 49 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
| 50 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
| 51 |
+
elif p.startswith("B-"):
|
| 52 |
+
t["entity_group"]=p[2:]
|
| 53 |
+
else:
|
| 54 |
+
t["entity_group"]=p
|
| 55 |
+
for t in w:
|
| 56 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
| 57 |
+
return w
|
| 58 |
+
|
| 59 |
+
class UniversalDependenciesPipeline(BellmanFordTokenClassificationPipeline):
|
| 60 |
+
def __init__(self,**kwargs):
|
| 61 |
+
kwargs["aggregation_strategy"]="simple"
|
| 62 |
+
super().__init__(**kwargs)
|
| 63 |
+
x=self.model.config.label2id
|
| 64 |
+
self.root=numpy.full((len(x)),-numpy.inf)
|
| 65 |
+
self.left_arc=numpy.full((len(x)),-numpy.inf)
|
| 66 |
+
self.right_arc=numpy.full((len(x)),-numpy.inf)
|
| 67 |
+
for k,v in x.items():
|
| 68 |
+
if k.endswith("|root"):
|
| 69 |
+
self.root[v]=0
|
| 70 |
+
elif k.find("|l-")>0:
|
| 71 |
+
self.left_arc[v]=0
|
| 72 |
+
elif k.find("|r-")>0:
|
| 73 |
+
self.right_arc[v]=0
|
| 74 |
+
self.multiword={}
|
| 75 |
+
if self.model.config.task_specific_params:
|
| 76 |
+
if "upos_multiword" in self.model.config.task_specific_params:
|
| 77 |
+
self.multiword=self.model.config.task_specific_params["upos_multiword"]
|
| 78 |
+
def postprocess(self,model_outputs,**kwargs):
|
| 79 |
+
import torch
|
| 80 |
+
kwargs["aggregation_strategy"]="simple"
|
| 81 |
+
if "logits" not in model_outputs:
|
| 82 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
| 83 |
+
w=self.bellman_ford_token_classification(model_outputs,**kwargs)
|
| 84 |
+
off=[(t["start"],t["end"]) for t in w]
|
| 85 |
+
for i,(s,e) in reversed(list(enumerate(off))):
|
| 86 |
+
if s<e:
|
| 87 |
+
d=w[i]["text"]
|
| 88 |
+
j=len(d)-len(d.lstrip())
|
| 89 |
+
if j>0:
|
| 90 |
+
d=d.lstrip()
|
| 91 |
+
off[i]=(off[i][0]+j,off[i][1])
|
| 92 |
+
j=len(d)-len(d.rstrip())
|
| 93 |
+
if j>0:
|
| 94 |
+
d=d.rstrip()
|
| 95 |
+
off[i]=(off[i][0],off[i][1]-j)
|
| 96 |
+
if d.strip()=="":
|
| 97 |
+
off.pop(i)
|
| 98 |
+
w.pop(i)
|
| 99 |
+
else:
|
| 100 |
+
p=w[i]["entity_group"]
|
| 101 |
+
if p in self.multiword:
|
| 102 |
+
d=d.lower()
|
| 103 |
+
if d in self.multiword[p]:
|
| 104 |
+
j=self.multiword[p][d]
|
| 105 |
+
if "".join(j)==d:
|
| 106 |
+
for k in reversed(j[1:]):
|
| 107 |
+
e=off[i][1]
|
| 108 |
+
w.insert(i+1,{"start":e-len(k),"end":e,"text":k,"entity_group":"","score":w[i]["score"]})
|
| 109 |
+
off.insert(i+1,(e-len(k),e))
|
| 110 |
+
w[i]["end"]=e-len(k)
|
| 111 |
+
off[i]=(off[i][0],e-len(k))
|
| 112 |
+
w[i]["text"]=" "+j[0]
|
| 113 |
+
w[i]["entity_group"]=""
|
| 114 |
+
else:
|
| 115 |
+
s,e=off[i]
|
| 116 |
+
for k in reversed(j[1:]):
|
| 117 |
+
w.insert(i+1,{"start":s,"end":e,"text":" "+k,"entity_group":"+","score":w[i]["score"]})
|
| 118 |
+
off.insert(i+1,(s,e))
|
| 119 |
+
w[i]["text"]=" "+j[0]
|
| 120 |
+
w[i]["entity_group"]=f"+{len(j)}"
|
| 121 |
+
v=self.tokenizer([t["text"] for t in w],add_special_tokens=False)
|
| 122 |
+
x=[not t["entity_group"].endswith(".") for t in w]
|
| 123 |
+
if len(x)<127:
|
| 124 |
+
x=[True]*len(x)
|
| 125 |
+
else:
|
| 126 |
+
k=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
|
| 127 |
+
for i in numpy.argsort(numpy.array([t["score"] for t in w])):
|
| 128 |
+
if x[i]==False and k+len(x)-i<8192:
|
| 129 |
+
x[i]=True
|
| 130 |
+
k+=len(x)-i+1
|
| 131 |
+
ids=[-1]
|
| 132 |
+
for i in range(len(x)):
|
| 133 |
+
if x[i]:
|
| 134 |
+
ids.append(i)
|
| 135 |
+
for j in range(i+1,len(x)):
|
| 136 |
+
ids.append(j)
|
| 137 |
+
ids.append(-1)
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
e=self.model.get_input_embeddings().weight
|
| 140 |
+
m=[]
|
| 141 |
+
for j in v["input_ids"]:
|
| 142 |
+
if j==[]:
|
| 143 |
+
j=[self.tokenizer.unk_token_id]
|
| 144 |
+
m.append(e[j,:].sum(axis=0))
|
| 145 |
+
m.append(e[self.tokenizer.sep_token_id,:])
|
| 146 |
+
m=torch.stack(m).to(self.device)
|
| 147 |
+
e=self.model(inputs_embeds=torch.unsqueeze(m[ids,:],0))
|
| 148 |
+
m=e.logits[0].cpu().numpy()
|
| 149 |
+
e=numpy.full((len(x),len(x),m.shape[-1]),m.min())
|
| 150 |
+
k=1
|
| 151 |
+
for i in range(len(x)):
|
| 152 |
+
if x[i]:
|
| 153 |
+
e[i,i]=m[k]+self.root
|
| 154 |
+
k+=1
|
| 155 |
+
for j in range(1,len(x)-i):
|
| 156 |
+
e[i+j,i]=m[k]+self.left_arc
|
| 157 |
+
e[i,i+j]=m[k]+self.right_arc
|
| 158 |
+
k+=1
|
| 159 |
+
k+=1
|
| 160 |
+
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
|
| 161 |
+
h=self.chu_liu_edmonds(m)
|
| 162 |
+
z=[i for i,j in enumerate(h) if i==j]
|
| 163 |
+
if len(z)>1:
|
| 164 |
+
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
|
| 165 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
| 166 |
+
h=self.chu_liu_edmonds(m)
|
| 167 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
| 168 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
| 169 |
+
u="# text = "+t+"\n"
|
| 170 |
+
for i,(s,e) in enumerate(off):
|
| 171 |
+
m=w[i]["entity_group"]
|
| 172 |
+
if m.startswith("+"):
|
| 173 |
+
if m!="+":
|
| 174 |
+
u+="\t".join([f"{i+1}-{i+int(m)}",t[s:e],"_","_","_","_","_","_","_","_" if i+int(m)<len(off) and e<off[i+int(m)][0] else "SpaceAfter=No"])+"\n"
|
| 175 |
+
u+="\t".join([str(i+1),w[i]["text"].strip(),"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_"])+"\n"
|
| 176 |
+
else:
|
| 177 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(off) and e<off[i+1][0] else "SpaceAfter=No"])+"\n"
|
| 178 |
+
return u+"\n"
|
| 179 |
+
def chu_liu_edmonds(self,matrix):
|
| 180 |
+
h=numpy.argmax(matrix,axis=0)
|
| 181 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
| 182 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
| 183 |
+
y=[]
|
| 184 |
+
while x!=y:
|
| 185 |
+
y=list(x)
|
| 186 |
+
for i,j in enumerate(x):
|
| 187 |
+
x[i]=b(x,i,j)
|
| 188 |
+
if max(x)<0:
|
| 189 |
+
return h
|
| 190 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
| 191 |
+
z=matrix-numpy.max(matrix,axis=0)
|
| 192 |
+
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
|
| 193 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
| 194 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
| 195 |
+
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
| 196 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
| 197 |
+
return h
|