PRIMER / model_card.json
Aakash-Tripathi's picture
Upload 5 files
ed863e8 verified
{
"model_name": "PRIMER",
"full_name": "Pretrained RadImageNet for Mammography Embedding Representations",
"version": "1.0.0",
"release_date": "2024-10-17",
"model_details": {
"organization": "Lab-Rasool",
"architecture": "ResNet-50",
"base_model": "RadImageNet ResNet-50",
"training_method": "SimCLR Contrastive Learning",
"model_type": "Feature Extraction / Embedding Model",
"modality": "Medical Imaging - Mammography",
"parameters": "23.5M",
"model_size_mb": 283,
"license": "Apache-2.0"
},
"intended_use": {
"primary_uses": [
"Feature extraction for mammography images",
"Similarity search and retrieval",
"Clustering and grouping mammograms",
"Transfer learning backbone for downstream tasks",
"Content-based image retrieval systems",
"Quality control and anomaly detection"
],
"out_of_scope": [
"Direct clinical diagnosis",
"Standalone diagnostic tool",
"Non-mammography medical images",
"Real-time processing without optimization"
]
},
"training_data": {
"dataset": "CMMD (Chinese Mammography Mass Database)",
"dataset_url": "https://doi.org/10.7937/tcia.eqde-3b16",
"num_training_samples": 13000,
"data_splits": {
"train": 0.7,
"validation": 0.15,
"test": 0.15
},
"image_format": "DICOM",
"views": ["CC (craniocaudal)", "MLO (mediolateral oblique)"],
"population": "Chinese population"
},
"training_procedure": {
"method": "Self-supervised contrastive learning (SimCLR)",
"loss_function": "NT-Xent (Normalized Temperature-scaled Cross Entropy)",
"epochs": 50,
"batch_size": 128,
"optimizer": "AdamW",
"learning_rate": 0.0001,
"scheduler": "Cosine annealing with warmup",
"temperature": 0.07,
"mixed_precision": true,
"hardware": "NVIDIA RTX 3090 (24GB VRAM)"
},
"performance_metrics": {
"embedding_quality": {
"silhouette_score": {
"radimagenet_baseline": 0.127,
"primer_finetuned": 0.289,
"improvement_percent": 127
},
"davies_bouldin_score": {
"radimagenet_baseline": 2.847,
"primer_finetuned": 1.653,
"improvement_percent": -42,
"note": "Lower is better"
},
"calinski_harabasz_score": {
"radimagenet_baseline": 1834,
"primer_finetuned": 3621,
"improvement_percent": 97
},
"embedding_variance": {
"radimagenet_baseline": 0.012,
"primer_finetuned": 0.024,
"improvement_percent": 100
}
}
},
"input_output": {
"input": {
"format": "DICOM or preprocessed image tensor",
"shape": [3, 224, 224],
"dtype": "float32",
"color_space": "RGB",
"normalization": "ImageNet (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])"
},
"output": {
"format": "Embedding vector",
"shape": [2048],
"dtype": "float32",
"normalization": "L2 normalization recommended"
}
},
"preprocessing_requirements": {
"critical_steps": [
"Photometric interpretation correction (MONOCHROME1 inversion)",
"Percentile-based intensity clipping (2nd-98th percentile)",
"Min-max normalization to [0, 255]",
"CLAHE enhancement (clipLimit=2.0, tileGridSize=8x8)",
"Grayscale to RGB conversion",
"Resize to 224x224",
"ImageNet normalization"
],
"dependencies": [
"pydicom>=2.4.4",
"opencv-python>=4.8.1.78",
"numpy>=1.26.0"
]
},
"limitations": {
"domain_specificity": "Trained on CMMD dataset (Chinese population); performance may vary on other populations",
"dicom_dependency": "Requires proper DICOM preprocessing for optimal results",
"resolution_loss": "High-resolution details may be lost at 224x224 input size",
"self_supervised": "No direct classification output; requires downstream task integration",
"photometric_interpretation": "Critical to handle MONOCHROME1/MONOCHROME2 correctly"
},
"ethical_considerations": {
"bias": "Model trained on Chinese population data; may not generalize equally to all demographics",
"clinical_use": "Not FDA approved; requires clinical validation before medical use",
"privacy": "DICOM files may contain PHI; ensure proper de-identification",
"interpretability": "Embeddings are learned representations; clinical interpretation required"
},
"citations": {
"primer": {
"title": "PRIMER: Pretrained RadImageNet for Mammography Embedding Representations",
"authors": "Lab-Rasool",
"year": 2024,
"url": "https://huggingface.co/Lab-Rasool/PRIMER"
},
"radimagenet": {
"title": "RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning",
"authors": "Mei et al.",
"journal": "Radiology: Artificial Intelligence",
"year": 2022,
"doi": "10.1148/ryai.210315"
},
"simclr": {
"title": "A Simple Framework for Contrastive Learning of Visual Representations",
"authors": "Chen et al.",
"conference": "ICML",
"year": 2020,
"arxiv": "2002.05709"
},
"cmmd": {
"title": "Chinese Mammography Database (CMMD)",
"source": "The Cancer Imaging Archive",
"doi": "10.7937/tcia.eqde-3b16"
}
},
"contact": {
"organization": "Lab-Rasool",
"huggingface": "https://huggingface.co/Lab-Rasool",
"model_repository": "https://huggingface.co/Lab-Rasool/PRIMER",
"issues": "https://huggingface.co/Lab-Rasool/PRIMER/discussions"
},
"technical_specifications": {
"framework": "PyTorch 2.1+",
"required_libraries": [
"torch>=2.1.0",
"torchvision>=0.16.0",
"timm>=0.9.12",
"pydicom>=2.4.4",
"opencv-python>=4.8.1.78",
"albumentations>=1.3.1"
],
"gpu_requirements": "12GB+ VRAM recommended for inference",
"inference_speed": "~50ms per image on RTX 3090"
}
}