{ "model_name": "PRIMER", "full_name": "Pretrained RadImageNet for Mammography Embedding Representations", "version": "1.0.0", "release_date": "2024-10-17", "model_details": { "organization": "Lab-Rasool", "architecture": "ResNet-50", "base_model": "RadImageNet ResNet-50", "training_method": "SimCLR Contrastive Learning", "model_type": "Feature Extraction / Embedding Model", "modality": "Medical Imaging - Mammography", "parameters": "23.5M", "model_size_mb": 283, "license": "Apache-2.0" }, "intended_use": { "primary_uses": [ "Feature extraction for mammography images", "Similarity search and retrieval", "Clustering and grouping mammograms", "Transfer learning backbone for downstream tasks", "Content-based image retrieval systems", "Quality control and anomaly detection" ], "out_of_scope": [ "Direct clinical diagnosis", "Standalone diagnostic tool", "Non-mammography medical images", "Real-time processing without optimization" ] }, "training_data": { "dataset": "CMMD (Chinese Mammography Mass Database)", "dataset_url": "https://doi.org/10.7937/tcia.eqde-3b16", "num_training_samples": 13000, "data_splits": { "train": 0.7, "validation": 0.15, "test": 0.15 }, "image_format": "DICOM", "views": ["CC (craniocaudal)", "MLO (mediolateral oblique)"], "population": "Chinese population" }, "training_procedure": { "method": "Self-supervised contrastive learning (SimCLR)", "loss_function": "NT-Xent (Normalized Temperature-scaled Cross Entropy)", "epochs": 50, "batch_size": 128, "optimizer": "AdamW", "learning_rate": 0.0001, "scheduler": "Cosine annealing with warmup", "temperature": 0.07, "mixed_precision": true, "hardware": "NVIDIA RTX 3090 (24GB VRAM)" }, "performance_metrics": { "embedding_quality": { "silhouette_score": { "radimagenet_baseline": 0.127, "primer_finetuned": 0.289, "improvement_percent": 127 }, "davies_bouldin_score": { "radimagenet_baseline": 2.847, "primer_finetuned": 1.653, "improvement_percent": -42, "note": "Lower is better" }, "calinski_harabasz_score": { "radimagenet_baseline": 1834, "primer_finetuned": 3621, "improvement_percent": 97 }, "embedding_variance": { "radimagenet_baseline": 0.012, "primer_finetuned": 0.024, "improvement_percent": 100 } } }, "input_output": { "input": { "format": "DICOM or preprocessed image tensor", "shape": [3, 224, 224], "dtype": "float32", "color_space": "RGB", "normalization": "ImageNet (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])" }, "output": { "format": "Embedding vector", "shape": [2048], "dtype": "float32", "normalization": "L2 normalization recommended" } }, "preprocessing_requirements": { "critical_steps": [ "Photometric interpretation correction (MONOCHROME1 inversion)", "Percentile-based intensity clipping (2nd-98th percentile)", "Min-max normalization to [0, 255]", "CLAHE enhancement (clipLimit=2.0, tileGridSize=8x8)", "Grayscale to RGB conversion", "Resize to 224x224", "ImageNet normalization" ], "dependencies": [ "pydicom>=2.4.4", "opencv-python>=4.8.1.78", "numpy>=1.26.0" ] }, "limitations": { "domain_specificity": "Trained on CMMD dataset (Chinese population); performance may vary on other populations", "dicom_dependency": "Requires proper DICOM preprocessing for optimal results", "resolution_loss": "High-resolution details may be lost at 224x224 input size", "self_supervised": "No direct classification output; requires downstream task integration", "photometric_interpretation": "Critical to handle MONOCHROME1/MONOCHROME2 correctly" }, "ethical_considerations": { "bias": "Model trained on Chinese population data; may not generalize equally to all demographics", "clinical_use": "Not FDA approved; requires clinical validation before medical use", "privacy": "DICOM files may contain PHI; ensure proper de-identification", "interpretability": "Embeddings are learned representations; clinical interpretation required" }, "citations": { "primer": { "title": "PRIMER: Pretrained RadImageNet for Mammography Embedding Representations", "authors": "Lab-Rasool", "year": 2024, "url": "https://huggingface.co/Lab-Rasool/PRIMER" }, "radimagenet": { "title": "RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning", "authors": "Mei et al.", "journal": "Radiology: Artificial Intelligence", "year": 2022, "doi": "10.1148/ryai.210315" }, "simclr": { "title": "A Simple Framework for Contrastive Learning of Visual Representations", "authors": "Chen et al.", "conference": "ICML", "year": 2020, "arxiv": "2002.05709" }, "cmmd": { "title": "Chinese Mammography Database (CMMD)", "source": "The Cancer Imaging Archive", "doi": "10.7937/tcia.eqde-3b16" } }, "contact": { "organization": "Lab-Rasool", "huggingface": "https://huggingface.co/Lab-Rasool", "model_repository": "https://huggingface.co/Lab-Rasool/PRIMER", "issues": "https://huggingface.co/Lab-Rasool/PRIMER/discussions" }, "technical_specifications": { "framework": "PyTorch 2.1+", "required_libraries": [ "torch>=2.1.0", "torchvision>=0.16.0", "timm>=0.9.12", "pydicom>=2.4.4", "opencv-python>=4.8.1.78", "albumentations>=1.3.1" ], "gpu_requirements": "12GB+ VRAM recommended for inference", "inference_speed": "~50ms per image on RTX 3090" } }