Labira/LabiraPJOK_123_100_Full
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0108
- Validation Loss: 0.0014
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 4.8014 | 3.8239 | 0 |
| 3.5330 | 3.0989 | 1 |
| 3.0273 | 2.6526 | 2 |
| 2.6530 | 2.0593 | 3 |
| 2.2572 | 1.6401 | 4 |
| 1.7060 | 1.0829 | 5 |
| 1.2904 | 0.6494 | 6 |
| 0.9646 | 0.4921 | 7 |
| 0.6371 | 0.2708 | 8 |
| 0.4612 | 0.2947 | 9 |
| 0.4154 | 0.2030 | 10 |
| 0.4027 | 0.1670 | 11 |
| 0.2759 | 0.1051 | 12 |
| 0.2515 | 0.1313 | 13 |
| 0.1759 | 0.0651 | 14 |
| 0.1293 | 0.0732 | 15 |
| 0.1595 | 0.0472 | 16 |
| 0.0989 | 0.0647 | 17 |
| 0.0797 | 0.0566 | 18 |
| 0.1292 | 0.0351 | 19 |
| 0.1098 | 0.0743 | 20 |
| 0.1490 | 0.0591 | 21 |
| 0.0934 | 0.0558 | 22 |
| 0.0720 | 0.0330 | 23 |
| 0.0502 | 0.0265 | 24 |
| 0.0598 | 0.0235 | 25 |
| 0.0589 | 0.0272 | 26 |
| 0.0409 | 0.0243 | 27 |
| 0.0445 | 0.0199 | 28 |
| 0.0425 | 0.0395 | 29 |
| 0.0420 | 0.0252 | 30 |
| 0.0332 | 0.0194 | 31 |
| 0.0286 | 0.0178 | 32 |
| 0.0480 | 0.0184 | 33 |
| 0.0361 | 0.0279 | 34 |
| 0.0529 | 0.0195 | 35 |
| 0.0296 | 0.0194 | 36 |
| 0.0346 | 0.0143 | 37 |
| 0.0256 | 0.0177 | 38 |
| 0.0331 | 0.0098 | 39 |
| 0.0386 | 0.0086 | 40 |
| 0.0303 | 0.0053 | 41 |
| 0.0310 | 0.0154 | 42 |
| 0.0193 | 0.0024 | 43 |
| 0.1070 | 0.0090 | 44 |
| 0.0937 | 0.0123 | 45 |
| 0.0766 | 0.0112 | 46 |
| 0.0698 | 0.0057 | 47 |
| 0.0297 | 0.0043 | 48 |
| 0.0385 | 0.0117 | 49 |
| 0.0802 | 0.0181 | 50 |
| 0.1040 | 0.0072 | 51 |
| 0.0836 | 0.0163 | 52 |
| 0.0861 | 0.0060 | 53 |
| 0.0867 | 0.0079 | 54 |
| 0.1242 | 0.0041 | 55 |
| 0.1090 | 0.0070 | 56 |
| 0.0394 | 0.0042 | 57 |
| 0.0312 | 0.0041 | 58 |
| 0.0391 | 0.0020 | 59 |
| 0.0320 | 0.0023 | 60 |
| 0.0479 | 0.0135 | 61 |
| 0.0403 | 0.0017 | 62 |
| 0.0352 | 0.0019 | 63 |
| 0.0314 | 0.0030 | 64 |
| 0.0254 | 0.0020 | 65 |
| 0.0243 | 0.0013 | 66 |
| 0.0504 | 0.0022 | 67 |
| 0.0474 | 0.0023 | 68 |
| 0.0430 | 0.0036 | 69 |
| 0.0142 | 0.0021 | 70 |
| 0.0169 | 0.0014 | 71 |
| 0.0110 | 0.0013 | 72 |
| 0.0229 | 0.0011 | 73 |
| 0.0476 | 0.0008 | 74 |
| 0.0461 | 0.0012 | 75 |
| 0.0170 | 0.0013 | 76 |
| 0.0210 | 0.0020 | 77 |
| 0.0146 | 0.0021 | 78 |
| 0.0206 | 0.0019 | 79 |
| 0.0137 | 0.0021 | 80 |
| 0.0125 | 0.0015 | 81 |
| 0.0303 | 0.0026 | 82 |
| 0.0100 | 0.0019 | 83 |
| 0.0088 | 0.0015 | 84 |
| 0.0128 | 0.0016 | 85 |
| 0.0153 | 0.0018 | 86 |
| 0.0141 | 0.0018 | 87 |
| 0.0163 | 0.0017 | 88 |
| 0.0104 | 0.0014 | 89 |
| 0.0098 | 0.0014 | 90 |
| 0.0116 | 0.0013 | 91 |
| 0.0160 | 0.0015 | 92 |
| 0.0161 | 0.0016 | 93 |
| 0.0088 | 0.0015 | 94 |
| 0.0101 | 0.0015 | 95 |
| 0.0105 | 0.0015 | 96 |
| 0.0110 | 0.0015 | 97 |
| 0.0049 | 0.0014 | 98 |
| 0.0108 | 0.0014 | 99 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for Labira/LabiraPJOK_456_100_Full
Base model
indolem/indobert-base-uncased