zhuangxialie
commited on
Model save
Browse files- README.md +57 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +235 -0
README.md
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
model_name: Qwen-code-7B-SFT-100k-v1-bird
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
- trl
|
| 7 |
+
- sft
|
| 8 |
+
licence: license
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Qwen-code-7B-SFT-100k-v1-bird
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
| 14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
|
| 21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 22 |
+
generator = pipeline("text-generation", model="ZhuangXialie/Qwen-code-7B-SFT-100k-v1-bird", device="cuda")
|
| 23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 24 |
+
print(output["generated_text"])
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Training procedure
|
| 28 |
+
|
| 29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dyx_team/huggingface/runs/w6pc47jn)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
This model was trained with SFT.
|
| 33 |
+
|
| 34 |
+
### Framework versions
|
| 35 |
+
|
| 36 |
+
- TRL: 0.16.0.dev0
|
| 37 |
+
- Transformers: 4.49.0
|
| 38 |
+
- Pytorch: 2.6.0
|
| 39 |
+
- Datasets: 3.5.1
|
| 40 |
+
- Tokenizers: 0.21.1
|
| 41 |
+
|
| 42 |
+
## Citations
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
Cite TRL as:
|
| 47 |
+
|
| 48 |
+
```bibtex
|
| 49 |
+
@misc{vonwerra2022trl,
|
| 50 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 51 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 52 |
+
year = 2020,
|
| 53 |
+
journal = {GitHub repository},
|
| 54 |
+
publisher = {GitHub},
|
| 55 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 56 |
+
}
|
| 57 |
+
```
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 57119042306048.0,
|
| 3 |
+
"train_loss": 0.03955811998175998,
|
| 4 |
+
"train_runtime": 751.6795,
|
| 5 |
+
"train_samples": 9428,
|
| 6 |
+
"train_samples_per_second": 2.629,
|
| 7 |
+
"train_steps_per_second": 0.165
|
| 8 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.49.0"
|
| 14 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 57119042306048.0,
|
| 3 |
+
"train_loss": 0.03955811998175998,
|
| 4 |
+
"train_runtime": 751.6795,
|
| 5 |
+
"train_samples": 9428,
|
| 6 |
+
"train_samples_per_second": 2.629,
|
| 7 |
+
"train_steps_per_second": 0.165
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 4.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 124,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.16129032258064516,
|
| 13 |
+
"grad_norm": 1.3462869408886267,
|
| 14 |
+
"learning_rate": 1.923076923076923e-05,
|
| 15 |
+
"loss": 0.1869,
|
| 16 |
+
"mean_token_accuracy": 0.9672520697116852,
|
| 17 |
+
"step": 5
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.3225806451612903,
|
| 21 |
+
"grad_norm": 0.16032580673129507,
|
| 22 |
+
"learning_rate": 3.846153846153846e-05,
|
| 23 |
+
"loss": 0.0853,
|
| 24 |
+
"mean_token_accuracy": 0.9812823057174682,
|
| 25 |
+
"step": 10
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 0.4838709677419355,
|
| 29 |
+
"grad_norm": 0.10052593361659107,
|
| 30 |
+
"learning_rate": 4.996396285840363e-05,
|
| 31 |
+
"loss": 0.0619,
|
| 32 |
+
"mean_token_accuracy": 0.986013001203537,
|
| 33 |
+
"step": 15
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.6451612903225806,
|
| 37 |
+
"grad_norm": 0.07255406696478843,
|
| 38 |
+
"learning_rate": 4.955986957912985e-05,
|
| 39 |
+
"loss": 0.0584,
|
| 40 |
+
"mean_token_accuracy": 0.986441147327423,
|
| 41 |
+
"step": 20
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 0.8064516129032258,
|
| 45 |
+
"grad_norm": 0.08920993926011508,
|
| 46 |
+
"learning_rate": 4.87147425228744e-05,
|
| 47 |
+
"loss": 0.052,
|
| 48 |
+
"mean_token_accuracy": 0.9883647918701172,
|
| 49 |
+
"step": 25
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"epoch": 0.967741935483871,
|
| 53 |
+
"grad_norm": 0.06573996870091518,
|
| 54 |
+
"learning_rate": 4.7445477962587224e-05,
|
| 55 |
+
"loss": 0.0524,
|
| 56 |
+
"mean_token_accuracy": 0.9878623425960541,
|
| 57 |
+
"step": 30
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 1.129032258064516,
|
| 61 |
+
"grad_norm": 0.056610436447897504,
|
| 62 |
+
"learning_rate": 4.5777451775537437e-05,
|
| 63 |
+
"loss": 0.0441,
|
| 64 |
+
"mean_token_accuracy": 0.9883042335510254,
|
| 65 |
+
"step": 35
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 1.2903225806451613,
|
| 69 |
+
"grad_norm": 0.05793088867879483,
|
| 70 |
+
"learning_rate": 4.37440121139768e-05,
|
| 71 |
+
"loss": 0.0449,
|
| 72 |
+
"mean_token_accuracy": 0.9885231554508209,
|
| 73 |
+
"step": 40
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 1.4516129032258065,
|
| 77 |
+
"grad_norm": 0.051892819891969894,
|
| 78 |
+
"learning_rate": 4.138581268943275e-05,
|
| 79 |
+
"loss": 0.0392,
|
| 80 |
+
"mean_token_accuracy": 0.9899458229541779,
|
| 81 |
+
"step": 45
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 1.6129032258064515,
|
| 85 |
+
"grad_norm": 0.0646130897394382,
|
| 86 |
+
"learning_rate": 3.875e-05,
|
| 87 |
+
"loss": 0.0421,
|
| 88 |
+
"mean_token_accuracy": 0.9895950436592102,
|
| 89 |
+
"step": 50
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 1.7741935483870968,
|
| 93 |
+
"grad_norm": 0.04950171648116134,
|
| 94 |
+
"learning_rate": 3.5889270750056945e-05,
|
| 95 |
+
"loss": 0.031,
|
| 96 |
+
"mean_token_accuracy": 0.9919082045555114,
|
| 97 |
+
"step": 55
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"epoch": 1.935483870967742,
|
| 101 |
+
"grad_norm": 0.0606413837545455,
|
| 102 |
+
"learning_rate": 3.286081830702121e-05,
|
| 103 |
+
"loss": 0.0347,
|
| 104 |
+
"mean_token_accuracy": 0.9910365581512451,
|
| 105 |
+
"step": 60
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 2.096774193548387,
|
| 109 |
+
"grad_norm": 0.07623335467494033,
|
| 110 |
+
"learning_rate": 2.9725189258195623e-05,
|
| 111 |
+
"loss": 0.03,
|
| 112 |
+
"mean_token_accuracy": 0.9921543657779693,
|
| 113 |
+
"step": 65
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 2.258064516129032,
|
| 117 |
+
"grad_norm": 0.04875134102847451,
|
| 118 |
+
"learning_rate": 2.6545072928086673e-05,
|
| 119 |
+
"loss": 0.0251,
|
| 120 |
+
"mean_token_accuracy": 0.9926283597946167,
|
| 121 |
+
"step": 70
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 2.4193548387096775,
|
| 125 |
+
"grad_norm": 0.059635109510899856,
|
| 126 |
+
"learning_rate": 2.3384048056871306e-05,
|
| 127 |
+
"loss": 0.0233,
|
| 128 |
+
"mean_token_accuracy": 0.9933796107769013,
|
| 129 |
+
"step": 75
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 2.5806451612903225,
|
| 133 |
+
"grad_norm": 0.06668699113879667,
|
| 134 |
+
"learning_rate": 2.0305311697146985e-05,
|
| 135 |
+
"loss": 0.0235,
|
| 136 |
+
"mean_token_accuracy": 0.993266487121582,
|
| 137 |
+
"step": 80
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 2.741935483870968,
|
| 141 |
+
"grad_norm": 0.06406854664489343,
|
| 142 |
+
"learning_rate": 1.7370415741602346e-05,
|
| 143 |
+
"loss": 0.0255,
|
| 144 |
+
"mean_token_accuracy": 0.9926106989383697,
|
| 145 |
+
"step": 85
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 2.903225806451613,
|
| 149 |
+
"grad_norm": 0.06289941290219148,
|
| 150 |
+
"learning_rate": 1.463803634168423e-05,
|
| 151 |
+
"loss": 0.0229,
|
| 152 |
+
"mean_token_accuracy": 0.9931235194206238,
|
| 153 |
+
"step": 90
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 3.064516129032258,
|
| 157 |
+
"grad_norm": 0.05401269074344149,
|
| 158 |
+
"learning_rate": 1.2162800819760516e-05,
|
| 159 |
+
"loss": 0.0218,
|
| 160 |
+
"mean_token_accuracy": 0.9935337245464325,
|
| 161 |
+
"step": 95
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 3.225806451612903,
|
| 165 |
+
"grad_norm": 0.05694790107472112,
|
| 166 |
+
"learning_rate": 9.994195527835116e-06,
|
| 167 |
+
"loss": 0.0125,
|
| 168 |
+
"mean_token_accuracy": 0.9963877737522125,
|
| 169 |
+
"step": 100
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"epoch": 3.3870967741935485,
|
| 173 |
+
"grad_norm": 0.07090477863149891,
|
| 174 |
+
"learning_rate": 8.175576487540416e-06,
|
| 175 |
+
"loss": 0.0123,
|
| 176 |
+
"mean_token_accuracy": 0.99611736536026,
|
| 177 |
+
"step": 105
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 3.5483870967741935,
|
| 181 |
+
"grad_norm": 0.05390988555062966,
|
| 182 |
+
"learning_rate": 6.743302591269457e-06,
|
| 183 |
+
"loss": 0.013,
|
| 184 |
+
"mean_token_accuracy": 0.9960679054260254,
|
| 185 |
+
"step": 110
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 3.709677419354839,
|
| 189 |
+
"grad_norm": 0.07736825400243297,
|
| 190 |
+
"learning_rate": 5.726008693996276e-06,
|
| 191 |
+
"loss": 0.0138,
|
| 192 |
+
"mean_token_accuracy": 0.9958937764167786,
|
| 193 |
+
"step": 115
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 3.870967741935484,
|
| 197 |
+
"grad_norm": 0.05845945058343013,
|
| 198 |
+
"learning_rate": 5.1440331285566846e-06,
|
| 199 |
+
"loss": 0.0135,
|
| 200 |
+
"mean_token_accuracy": 0.9959296882152557,
|
| 201 |
+
"step": 120
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 4.0,
|
| 205 |
+
"mean_token_accuracy": 0.9968161135911942,
|
| 206 |
+
"step": 124,
|
| 207 |
+
"total_flos": 57119042306048.0,
|
| 208 |
+
"train_loss": 0.03955811998175998,
|
| 209 |
+
"train_runtime": 751.6795,
|
| 210 |
+
"train_samples_per_second": 2.629,
|
| 211 |
+
"train_steps_per_second": 0.165
|
| 212 |
+
}
|
| 213 |
+
],
|
| 214 |
+
"logging_steps": 5,
|
| 215 |
+
"max_steps": 124,
|
| 216 |
+
"num_input_tokens_seen": 0,
|
| 217 |
+
"num_train_epochs": 4,
|
| 218 |
+
"save_steps": 1000,
|
| 219 |
+
"stateful_callbacks": {
|
| 220 |
+
"TrainerControl": {
|
| 221 |
+
"args": {
|
| 222 |
+
"should_epoch_stop": false,
|
| 223 |
+
"should_evaluate": false,
|
| 224 |
+
"should_log": false,
|
| 225 |
+
"should_save": true,
|
| 226 |
+
"should_training_stop": true
|
| 227 |
+
},
|
| 228 |
+
"attributes": {}
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"total_flos": 57119042306048.0,
|
| 232 |
+
"train_batch_size": 1,
|
| 233 |
+
"trial_name": null,
|
| 234 |
+
"trial_params": null
|
| 235 |
+
}
|