Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +8 -3
- config.json +25 -0
- model.safetensors +3 -0
- modelling_trm.py +123 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,8 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Trained TRM Model
|
| 3 |
+
|
| 4 |
+
This is a TRM model trained using the provided datasets.
|
| 5 |
+
|
| 6 |
+
## How to use
|
| 7 |
+
|
| 8 |
+
[More detailed usage instructions can be added here]
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"H_cycles": 1,
|
| 3 |
+
"H_layers": 8,
|
| 4 |
+
"L_cycles": 1,
|
| 5 |
+
"L_layers": 2,
|
| 6 |
+
"act_epsilon": 0.01,
|
| 7 |
+
"act_threshold": 0.9,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"TRM"
|
| 10 |
+
],
|
| 11 |
+
"depth_H": 2,
|
| 12 |
+
"depth_L": 2,
|
| 13 |
+
"dropout": 0.1,
|
| 14 |
+
"dtype": "float32",
|
| 15 |
+
"expansion": 4,
|
| 16 |
+
"halt_epsilon": 0.01,
|
| 17 |
+
"halt_max_steps": 4,
|
| 18 |
+
"hidden_size": 32,
|
| 19 |
+
"model_type": "trm",
|
| 20 |
+
"num_heads": 4,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"seq_len": 4096,
|
| 23 |
+
"transformers_version": "4.57.0",
|
| 24 |
+
"vocab_size": 1183855
|
| 25 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89b827be0651807c55d7d4d3fcd1236efd8d9bcc1ff5ac64cd516718cede1383
|
| 3 |
+
size 303611768
|
modelling_trm.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from einops import rearrange, repeat
|
| 5 |
+
from einops.layers.torch import EinMix
|
| 6 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 7 |
+
|
| 8 |
+
# ---------------------------
|
| 9 |
+
# Configuration Class
|
| 10 |
+
# ---------------------------
|
| 11 |
+
class TRMConfig(PretrainedConfig):
|
| 12 |
+
model_type = "trm"
|
| 13 |
+
|
| 14 |
+
def __init__(self,
|
| 15 |
+
vocab_size=32000,
|
| 16 |
+
hidden_size=256,
|
| 17 |
+
seq_len=128,
|
| 18 |
+
depth_L=2,
|
| 19 |
+
depth_H=2,
|
| 20 |
+
act_threshold=0.9,
|
| 21 |
+
act_epsilon=1e-2,
|
| 22 |
+
**kwargs):
|
| 23 |
+
super().__init__(**kwargs)
|
| 24 |
+
self.vocab_size = vocab_size
|
| 25 |
+
self.hidden_size = hidden_size
|
| 26 |
+
self.seq_len = seq_len
|
| 27 |
+
self.depth_L = depth_L
|
| 28 |
+
self.depth_H = depth_H
|
| 29 |
+
self.act_threshold = act_threshold
|
| 30 |
+
self.act_epsilon = act_epsilon
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ---------------------------
|
| 34 |
+
# Model Architecture
|
| 35 |
+
# ---------------------------
|
| 36 |
+
class HaltingBlock(nn.Module):
|
| 37 |
+
def __init__(self, hidden_size, act_threshold, act_epsilon):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.proj = nn.Linear(hidden_size, hidden_size)
|
| 40 |
+
self.act_proj = nn.Linear(hidden_size, 1)
|
| 41 |
+
self.act_threshold = act_threshold
|
| 42 |
+
self.act_epsilon = act_epsilon
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
halting_probs = torch.sigmoid(self.act_proj(x))
|
| 46 |
+
remainders = torch.zeros_like(halting_probs)
|
| 47 |
+
n_updates = torch.zeros_like(halting_probs)
|
| 48 |
+
still_running = torch.ones_like(halting_probs, dtype=torch.bool)
|
| 49 |
+
accumulated_output = torch.zeros_like(x)
|
| 50 |
+
accumulated_prob = torch.zeros_like(halting_probs)
|
| 51 |
+
|
| 52 |
+
while still_running.any():
|
| 53 |
+
p = torch.where(still_running, halting_probs, torch.zeros_like(halting_probs))
|
| 54 |
+
new_accum = accumulated_prob + p
|
| 55 |
+
|
| 56 |
+
still_running = new_accum < self.act_threshold
|
| 57 |
+
remainder = torch.where(still_running, torch.zeros_like(halting_probs), 1 - accumulated_prob)
|
| 58 |
+
|
| 59 |
+
update_weights = torch.where(still_running, p, remainder)
|
| 60 |
+
accumulated_output += update_weights * torch.tanh(self.proj(x))
|
| 61 |
+
accumulated_prob += update_weights
|
| 62 |
+
n_updates += still_running.float()
|
| 63 |
+
|
| 64 |
+
if (1 - accumulated_prob).mean() < self.act_epsilon:
|
| 65 |
+
break
|
| 66 |
+
|
| 67 |
+
return accumulated_output, accumulated_prob.mean()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class TRMLayer(nn.Module):
|
| 71 |
+
def __init__(self, hidden_size, depth_H, act_threshold, act_epsilon):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.blocks = nn.ModuleList([
|
| 74 |
+
HaltingBlock(hidden_size, act_threshold, act_epsilon) for _ in range(depth_H)
|
| 75 |
+
])
|
| 76 |
+
self.norm = nn.LayerNorm(hidden_size)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
for block in self.blocks:
|
| 80 |
+
x, _ = block(x)
|
| 81 |
+
return self.norm(x)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class TRM(PreTrainedModel):
|
| 85 |
+
config_class = TRMConfig
|
| 86 |
+
|
| 87 |
+
def __init__(self, config):
|
| 88 |
+
super().__init__(config)
|
| 89 |
+
self.emb = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 90 |
+
self.pos_emb = nn.Parameter(torch.zeros(1, config.seq_len, config.hidden_size))
|
| 91 |
+
self.layers = nn.ModuleList([
|
| 92 |
+
TRMLayer(config.hidden_size, config.depth_H, config.act_threshold, config.act_epsilon)
|
| 93 |
+
for _ in range(config.depth_L)
|
| 94 |
+
])
|
| 95 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
| 96 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 97 |
+
|
| 98 |
+
self.post_init()
|
| 99 |
+
|
| 100 |
+
def forward(self, input_ids, labels=None):
|
| 101 |
+
x = self.emb(input_ids) + self.pos_emb[:, :input_ids.size(1), :]
|
| 102 |
+
for layer in self.layers:
|
| 103 |
+
x = layer(x)
|
| 104 |
+
x = self.norm(x)
|
| 105 |
+
logits = self.lm_head(x)
|
| 106 |
+
|
| 107 |
+
loss = None
|
| 108 |
+
if labels is not None:
|
| 109 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 110 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 111 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 112 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 113 |
+
|
| 114 |
+
return {"loss": loss, "logits": logits}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# ---------------------------
|
| 118 |
+
# Utility: Register to AutoClasses
|
| 119 |
+
# ---------------------------
|
| 120 |
+
from transformers import AutoConfig, AutoModel
|
| 121 |
+
|
| 122 |
+
AutoConfig.register("trm", TRMConfig)
|
| 123 |
+
AutoModel.register(TRMConfig, TRM)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|