Upload Model.py with huggingface_hub
Browse files
Model.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torchvision
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
######################################################################
|
| 9 |
+
# IMAGE DOWN SAMPLING
|
| 10 |
+
######################################################################
|
| 11 |
+
class ImageDownSampling(nn.Module):
|
| 12 |
+
def __init__(self, height, width, scale):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.resize = transforms.Resize(size=(height//scale, width//scale))
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
return self.resize(x)
|
| 18 |
+
|
| 19 |
+
######################################################################
|
| 20 |
+
# IMAGE SHARPENING
|
| 21 |
+
######################################################################
|
| 22 |
+
class ImageSharp(nn.Module):
|
| 23 |
+
def __init__(self):
|
| 24 |
+
super(ImageSharp, self).__init__()
|
| 25 |
+
|
| 26 |
+
def forward(self, x):
|
| 27 |
+
B, C, H, W = x.shape
|
| 28 |
+
device = x.device
|
| 29 |
+
# Sharpening kernel: basic 3x3
|
| 30 |
+
kernel = torch.tensor([[[[0, -1, 0],
|
| 31 |
+
[-1, 5, -1],
|
| 32 |
+
[0, -1, 0]]]], dtype=torch.float32, device=device) # (1, 1, 3, 3)
|
| 33 |
+
# Apply the kernel using group convolution (one group per channel)
|
| 34 |
+
kernel = kernel.repeat(C, 1, 1, 1) # (C, 1, 3, 3) --> here C=1, so it's still (1, 1, 3, 3)
|
| 35 |
+
|
| 36 |
+
# Apply convolution
|
| 37 |
+
sharpened = F.conv2d(x, kernel, padding=1, groups=C) # padding=1 keeps same spatial size
|
| 38 |
+
|
| 39 |
+
# Clamp to stay within valid image range
|
| 40 |
+
sharpened = torch.clamp(sharpened, 0, 1)
|
| 41 |
+
|
| 42 |
+
return sharpened
|
| 43 |
+
|
| 44 |
+
######################################################################
|
| 45 |
+
# IMAGE PATCHING
|
| 46 |
+
######################################################################
|
| 47 |
+
class ImagePatching(nn.Module):
|
| 48 |
+
def __init__(self, patch_size: int):
|
| 49 |
+
super(ImagePatching, self).__init__()
|
| 50 |
+
self.patch_size = patch_size
|
| 51 |
+
self.image_patch = nn.Unfold(kernel_size=patch_size, stride=patch_size)
|
| 52 |
+
self.image_sharp = ImageSharp()
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
batch_size, channels, height, width = x.shape
|
| 56 |
+
x = self.image_sharp(x)
|
| 57 |
+
x = self.image_patch(x)
|
| 58 |
+
x = x.transpose(1, 2).contiguous()
|
| 59 |
+
x = x.view(-1, height // self.patch_size, width // self.patch_size, channels, self.patch_size, self.patch_size)
|
| 60 |
+
x = x.view(-1, channels, self.patch_size, self.patch_size)
|
| 61 |
+
return x
|
| 62 |
+
|
| 63 |
+
######################################################################
|
| 64 |
+
# DOUBLE CONVOLUTION LAYER
|
| 65 |
+
######################################################################
|
| 66 |
+
class DoubleConvLayer(nn.Module):
|
| 67 |
+
def __init__(self, in_feature: int, out_feature: int):
|
| 68 |
+
super(DoubleConvLayer, self).__init__()
|
| 69 |
+
self.double_conv_layer = nn.Sequential(
|
| 70 |
+
nn.Conv2d(in_channels=in_feature, out_channels=out_feature, kernel_size=3, padding=1),
|
| 71 |
+
nn.InstanceNorm2d(num_features=out_feature),
|
| 72 |
+
nn.LeakyReLU(inplace=True),
|
| 73 |
+
nn.Conv2d(in_channels=out_feature, out_channels=out_feature, kernel_size=3, padding=1),
|
| 74 |
+
nn.InstanceNorm2d(num_features=out_feature),
|
| 75 |
+
nn.LeakyReLU(inplace=True)
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
return self.double_conv_layer(x)
|
| 80 |
+
|
| 81 |
+
######################################################################
|
| 82 |
+
# FEATURE EXTRACTION FROM ENCODER PART
|
| 83 |
+
######################################################################
|
| 84 |
+
class EncoderFetureExtraction(nn.Module):
|
| 85 |
+
def __init__(self, feature: int):
|
| 86 |
+
super(EncoderFetureExtraction, self).__init__()
|
| 87 |
+
|
| 88 |
+
self.feature_extraction = nn.Sequential(
|
| 89 |
+
nn.Conv2d(in_channels=feature, out_channels=1, kernel_size=1, stride=1),
|
| 90 |
+
nn.InstanceNorm2d(num_features=1),
|
| 91 |
+
nn.LeakyReLU(inplace=True),
|
| 92 |
+
nn.Sigmoid()
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
self.relu = nn.LeakyReLU()
|
| 96 |
+
|
| 97 |
+
def forward(self, x):
|
| 98 |
+
x1 = self.feature_extraction(x)
|
| 99 |
+
return x * x1
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
######################################################################
|
| 103 |
+
# BOTTLENECK LAYER OF THE MODEL
|
| 104 |
+
######################################################################
|
| 105 |
+
class BottleNeck(nn.Module):
|
| 106 |
+
def __init__(self, in_ch, out_ch):
|
| 107 |
+
super(BottleNeck, self).__init__()
|
| 108 |
+
self.bottleneck = nn.Sequential(
|
| 109 |
+
nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=3, padding=1),
|
| 110 |
+
nn.InstanceNorm2d(num_features=out_ch),
|
| 111 |
+
nn.LeakyReLU(inplace=True)
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
return self.bottleneck(x)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
######################################################################
|
| 119 |
+
# SOFT-ATTENTION IN DECODER LAYER
|
| 120 |
+
######################################################################
|
| 121 |
+
class AttentionGate(nn.Module):
|
| 122 |
+
def __init__(self, dim_g, dim_x, dim_l):
|
| 123 |
+
super(AttentionGate, self).__init__()
|
| 124 |
+
self.Wg = nn.Sequential(
|
| 125 |
+
nn.Conv2d(in_channels=dim_g, out_channels=dim_l, kernel_size=1, stride=1),
|
| 126 |
+
nn.BatchNorm2d(num_features=dim_l))
|
| 127 |
+
|
| 128 |
+
self.Wx = nn.Sequential(
|
| 129 |
+
nn.Conv2d(in_channels=dim_x, out_channels=dim_l, kernel_size=1, stride=1),
|
| 130 |
+
nn.BatchNorm2d(num_features=dim_l))
|
| 131 |
+
|
| 132 |
+
self.alpha_conv = nn.Sequential(
|
| 133 |
+
nn.Conv2d(in_channels=dim_l, out_channels=1, kernel_size=1, stride=1),
|
| 134 |
+
nn.BatchNorm2d(num_features=1),
|
| 135 |
+
nn.Sigmoid())
|
| 136 |
+
|
| 137 |
+
self.up_conv = nn.ConvTranspose2d(in_channels=dim_g, out_channels=dim_g,
|
| 138 |
+
kernel_size=2, stride=2)
|
| 139 |
+
|
| 140 |
+
self.relu = nn.ReLU()
|
| 141 |
+
|
| 142 |
+
def forward(self, encoder_tensor, decoder_tensor):
|
| 143 |
+
# g > x, g is decoder, x is encoder
|
| 144 |
+
g = self.up_conv(decoder_tensor) # [b, 512, 32, 32]
|
| 145 |
+
w_x = self.Wx(encoder_tensor) # [b, 128, 32 ,32]
|
| 146 |
+
w_g = self.Wg(g) # [b, 128, 32, 32]
|
| 147 |
+
|
| 148 |
+
alpha = self.alpha_conv(self.relu(w_x + w_g))
|
| 149 |
+
|
| 150 |
+
return encoder_tensor * alpha
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
######################################################################
|
| 154 |
+
# IMAGE RECONSTRUCTION FROM PATCH
|
| 155 |
+
######################################################################
|
| 156 |
+
class ImageFolding(nn.Module):
|
| 157 |
+
def __init__(self, image_size: int, patch_size: int, batch_size: int):
|
| 158 |
+
super(ImageFolding, self).__init__()
|
| 159 |
+
self.num_patches = image_size // patch_size
|
| 160 |
+
self.batch_size = batch_size
|
| 161 |
+
self.folding = nn.Fold(output_size=(image_size, image_size),
|
| 162 |
+
kernel_size=(patch_size, patch_size),
|
| 163 |
+
stride=(patch_size, patch_size))
|
| 164 |
+
|
| 165 |
+
def forward(self, x):
|
| 166 |
+
x1 = x.view(self.batch_size, self.num_patches * self.num_patches, -1)
|
| 167 |
+
x1 = x1.transpose(1, 2).contiguous()
|
| 168 |
+
x1 = self.folding(x1)
|
| 169 |
+
return x1
|
| 170 |
+
|
| 171 |
+
######################################################################
|
| 172 |
+
# ENCODER LAYERS
|
| 173 |
+
######################################################################
|
| 174 |
+
class Encoder(nn.Module):
|
| 175 |
+
def __init__(self, in_channel, out_channel, enc_fet_ch, max_pool_size, is_concate=False):
|
| 176 |
+
super().__init__()
|
| 177 |
+
self.double_conv = DoubleConvLayer(in_feature=in_channel, out_feature=out_channel)
|
| 178 |
+
self.enc_feature_extraction = EncoderFetureExtraction(feature=enc_fet_ch)
|
| 179 |
+
self.pooling_layer = nn.MaxPool2d(kernel_size=max_pool_size, stride=max_pool_size)
|
| 180 |
+
self.concat = is_concate
|
| 181 |
+
|
| 182 |
+
def forward(self, x, concat_tensor=None):
|
| 183 |
+
x = self.double_conv(x)
|
| 184 |
+
if self.concat:
|
| 185 |
+
x = torch.cat([concat_tensor, x], dim=1)
|
| 186 |
+
skip_connection = self.enc_feature_extraction(x)
|
| 187 |
+
x = self.pooling_layer(x)
|
| 188 |
+
return x, skip_connection
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
######################################################################
|
| 192 |
+
# Decoder LAYERS
|
| 193 |
+
######################################################################
|
| 194 |
+
class Decoder(nn.Module):
|
| 195 |
+
def __init__(self, tensor_dim_encoder, tensor_dim_decoder, tensor_dim_mid, up_conv_in_ch, up_conv_out_ch, up_conv_scale, dconv_in_feature, dconv_out_feature, is_concat=False):
|
| 196 |
+
super().__init__()
|
| 197 |
+
self.soft_attention = AttentionGate(dim_g=tensor_dim_decoder, dim_x=tensor_dim_encoder, dim_l=tensor_dim_mid)
|
| 198 |
+
self.up_conv = nn.ConvTranspose2d(in_channels=up_conv_in_ch, out_channels=up_conv_out_ch, kernel_size=up_conv_scale, stride=up_conv_scale)
|
| 199 |
+
self.double_conv = DoubleConvLayer(in_feature=dconv_in_feature, out_feature=dconv_out_feature)
|
| 200 |
+
self.concat = is_concat
|
| 201 |
+
|
| 202 |
+
def forward(self, encoder_tensor, decoder_tensor):
|
| 203 |
+
x = self.soft_attention(encoder_tensor, decoder_tensor)
|
| 204 |
+
y = self.up_conv(decoder_tensor)
|
| 205 |
+
if self.concat:
|
| 206 |
+
x = torch.cat([x, y], dim=1)
|
| 207 |
+
x = self.double_conv(x)
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
class VesselSegmentModel(PreTrainedModel):
|
| 211 |
+
config_class = VesselSegmentConfig
|
| 212 |
+
def __init__(self, config: VesselSegmentConfig=VesselSegmentConfig()):
|
| 213 |
+
super().__init__(config)
|
| 214 |
+
# image patch
|
| 215 |
+
self.img_patch = ImagePatching(patch_size=config.patch_size)
|
| 216 |
+
|
| 217 |
+
# image downsampling
|
| 218 |
+
self.img_down_sampling_1 = ImageDownSampling(height=config.patch_size, width=config.patch_size, scale=2)
|
| 219 |
+
self.img_down_sampling_2 = ImageDownSampling(height=config.patch_size, width=config.patch_size, scale=4)
|
| 220 |
+
|
| 221 |
+
# encoder layers
|
| 222 |
+
self.encoder_layer_1 = Encoder(config.input_channels, config.features[0], enc_fet_ch=config.features[0], max_pool_size=2, is_concate=False)
|
| 223 |
+
self.encoder_layer_2 = Encoder(config.input_channels, config.features[1], enc_fet_ch=config.features[0]*2, max_pool_size=2, is_concate=True)
|
| 224 |
+
self.encoder_layer_3 = Encoder(config.input_channels, config.features[2], enc_fet_ch=config.features[0]*4, max_pool_size=2, is_concate=True)
|
| 225 |
+
|
| 226 |
+
# bottle-neck layer
|
| 227 |
+
self.bottleneck = BottleNeck(in_ch=config.features[2]*2, out_ch=config.features[2]*4)
|
| 228 |
+
|
| 229 |
+
# decoder layers
|
| 230 |
+
self.decoder_layer_1 = Decoder(tensor_dim_decoder=config.features[-1]*4, tensor_dim_encoder=config.features[-1]*2, tensor_dim_mid=config.features[0], up_conv_in_ch=config.features[-1]*4, up_conv_out_ch=config.features[-1]*2, up_conv_scale=2, dconv_in_feature=config.features[-1]*4, dconv_out_feature=config.features[-1]*2, is_concat=True)
|
| 231 |
+
self.decoder_layer_2 = Decoder(tensor_dim_decoder=config.features[-1]*2, tensor_dim_encoder=config.features[-1], tensor_dim_mid=config.features[1], up_conv_in_ch=config.features[-1]*2, up_conv_out_ch=config.features[-1], up_conv_scale=2, dconv_in_feature=config.features[-1]*2, dconv_out_feature=config.features[-1], is_concat=True)
|
| 232 |
+
self.decoder_layer_3 = Decoder(tensor_dim_decoder=config.features[-1], tensor_dim_encoder=config.features[-2], tensor_dim_mid=config.features[2], up_conv_in_ch=config.features[-1], up_conv_out_ch=config.features[-2], up_conv_scale=2, dconv_in_feature=config.features[-1], dconv_out_feature=config.features[-2], is_concat=True)
|
| 233 |
+
|
| 234 |
+
# Segmentation Head
|
| 235 |
+
self.segmenation_head = nn.Sequential(
|
| 236 |
+
nn.Conv2d(in_channels=config.features[-3], out_channels=config.num_classes, kernel_size=1, padding=0, stride=1),
|
| 237 |
+
ImageFolding(image_size=config.image_size[0], patch_size=config.patch_size, batch_size=config.batch_size)
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
def forward(self, x):
|
| 241 |
+
IMG_1 = self.img_patch(x)
|
| 242 |
+
IMG_2 = self.img_down_sampling_1(IMG_1)
|
| 243 |
+
IMG_3 = self.img_down_sampling_2(IMG_2)
|
| 244 |
+
|
| 245 |
+
# encoder
|
| 246 |
+
e1, sk1 = self.encoder_layer_1(IMG_1, None)
|
| 247 |
+
e2, sk2 = self.encoder_layer_2(IMG_2, e1)
|
| 248 |
+
e3, sk3 = self.encoder_layer_3(IMG_3, e2)
|
| 249 |
+
|
| 250 |
+
# bottleneck
|
| 251 |
+
b = self.bottleneck(e3)
|
| 252 |
+
|
| 253 |
+
# decoder
|
| 254 |
+
d1 = self.decoder_layer_1(sk3, b)
|
| 255 |
+
d2 = self.decoder_layer_2(sk2, d1)
|
| 256 |
+
d3 = self.decoder_layer_3(sk1, d2)
|
| 257 |
+
|
| 258 |
+
# head
|
| 259 |
+
head = self.segmenation_head(d3)
|
| 260 |
+
|
| 261 |
+
return head
|