Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- chat_template.jinja +7 -0
- config.json +171 -0
- generation_config.json +12 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.safetensors.index.json +1169 -0
- preprocessor_config.json +37 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- trainer_state.json +2274 -0
- training_args.bin +3 -0
- video_preprocessor_config.json +43 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
|
| 2 |
+
You are a helpful assistant.<|im_end|>
|
| 3 |
+
{% endif %}<|im_start|>{{ message['role'] }}
|
| 4 |
+
{% if message['content'] is string %}{{ message['content'] }}<|im_end|>
|
| 5 |
+
{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
|
| 6 |
+
{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
|
| 7 |
+
{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2_5_VLForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"eos_token_id": 151645,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 5120,
|
| 9 |
+
"image_token_id": 151655,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 27648,
|
| 12 |
+
"max_position_embeddings": 128000,
|
| 13 |
+
"max_window_layers": 64,
|
| 14 |
+
"model_type": "qwen2_5_vl",
|
| 15 |
+
"num_attention_heads": 40,
|
| 16 |
+
"num_hidden_layers": 64,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"pad_token_id": 151643,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": {
|
| 21 |
+
"mrope_section": [
|
| 22 |
+
16,
|
| 23 |
+
24,
|
| 24 |
+
24
|
| 25 |
+
],
|
| 26 |
+
"rope_type": "default",
|
| 27 |
+
"type": "default"
|
| 28 |
+
},
|
| 29 |
+
"rope_theta": 1000000.0,
|
| 30 |
+
"sliding_window": 32768,
|
| 31 |
+
"text_config": {
|
| 32 |
+
"architectures": [
|
| 33 |
+
"Qwen2_5_VLForConditionalGeneration"
|
| 34 |
+
],
|
| 35 |
+
"attention_dropout": 0.0,
|
| 36 |
+
"eos_token_id": 151645,
|
| 37 |
+
"hidden_act": "silu",
|
| 38 |
+
"hidden_size": 5120,
|
| 39 |
+
"image_token_id": null,
|
| 40 |
+
"initializer_range": 0.02,
|
| 41 |
+
"intermediate_size": 27648,
|
| 42 |
+
"layer_types": [
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"full_attention",
|
| 48 |
+
"full_attention",
|
| 49 |
+
"full_attention",
|
| 50 |
+
"full_attention",
|
| 51 |
+
"full_attention",
|
| 52 |
+
"full_attention",
|
| 53 |
+
"full_attention",
|
| 54 |
+
"full_attention",
|
| 55 |
+
"full_attention",
|
| 56 |
+
"full_attention",
|
| 57 |
+
"full_attention",
|
| 58 |
+
"full_attention",
|
| 59 |
+
"full_attention",
|
| 60 |
+
"full_attention",
|
| 61 |
+
"full_attention",
|
| 62 |
+
"full_attention",
|
| 63 |
+
"full_attention",
|
| 64 |
+
"full_attention",
|
| 65 |
+
"full_attention",
|
| 66 |
+
"full_attention",
|
| 67 |
+
"full_attention",
|
| 68 |
+
"full_attention",
|
| 69 |
+
"full_attention",
|
| 70 |
+
"full_attention",
|
| 71 |
+
"full_attention",
|
| 72 |
+
"full_attention",
|
| 73 |
+
"full_attention",
|
| 74 |
+
"full_attention",
|
| 75 |
+
"full_attention",
|
| 76 |
+
"full_attention",
|
| 77 |
+
"full_attention",
|
| 78 |
+
"full_attention",
|
| 79 |
+
"full_attention",
|
| 80 |
+
"full_attention",
|
| 81 |
+
"full_attention",
|
| 82 |
+
"full_attention",
|
| 83 |
+
"full_attention",
|
| 84 |
+
"full_attention",
|
| 85 |
+
"full_attention",
|
| 86 |
+
"full_attention",
|
| 87 |
+
"full_attention",
|
| 88 |
+
"full_attention",
|
| 89 |
+
"full_attention",
|
| 90 |
+
"full_attention",
|
| 91 |
+
"full_attention",
|
| 92 |
+
"full_attention",
|
| 93 |
+
"full_attention",
|
| 94 |
+
"full_attention",
|
| 95 |
+
"full_attention",
|
| 96 |
+
"full_attention",
|
| 97 |
+
"full_attention",
|
| 98 |
+
"full_attention",
|
| 99 |
+
"full_attention",
|
| 100 |
+
"full_attention",
|
| 101 |
+
"full_attention",
|
| 102 |
+
"full_attention",
|
| 103 |
+
"full_attention",
|
| 104 |
+
"full_attention",
|
| 105 |
+
"full_attention",
|
| 106 |
+
"full_attention"
|
| 107 |
+
],
|
| 108 |
+
"max_position_embeddings": 128000,
|
| 109 |
+
"max_window_layers": 64,
|
| 110 |
+
"model_type": "qwen2_5_vl_text",
|
| 111 |
+
"num_attention_heads": 40,
|
| 112 |
+
"num_hidden_layers": 64,
|
| 113 |
+
"num_key_value_heads": 8,
|
| 114 |
+
"pad_token_id": 151643,
|
| 115 |
+
"rms_norm_eps": 1e-06,
|
| 116 |
+
"rope_scaling": {
|
| 117 |
+
"mrope_section": [
|
| 118 |
+
16,
|
| 119 |
+
24,
|
| 120 |
+
24
|
| 121 |
+
],
|
| 122 |
+
"rope_type": "default",
|
| 123 |
+
"type": "default"
|
| 124 |
+
},
|
| 125 |
+
"rope_theta": 1000000.0,
|
| 126 |
+
"sliding_window": null,
|
| 127 |
+
"torch_dtype": "float32",
|
| 128 |
+
"use_cache": false,
|
| 129 |
+
"use_sliding_window": false,
|
| 130 |
+
"video_token_id": null,
|
| 131 |
+
"vision_end_token_id": 151653,
|
| 132 |
+
"vision_start_token_id": 151652,
|
| 133 |
+
"vision_token_id": 151654,
|
| 134 |
+
"vocab_size": 152064
|
| 135 |
+
},
|
| 136 |
+
"tie_word_embeddings": false,
|
| 137 |
+
"torch_dtype": "bfloat16",
|
| 138 |
+
"transformers_version": "4.55.0",
|
| 139 |
+
"use_cache": false,
|
| 140 |
+
"use_sliding_window": false,
|
| 141 |
+
"video_token_id": 151656,
|
| 142 |
+
"vision_config": {
|
| 143 |
+
"depth": 32,
|
| 144 |
+
"fullatt_block_indexes": [
|
| 145 |
+
7,
|
| 146 |
+
15,
|
| 147 |
+
23,
|
| 148 |
+
31
|
| 149 |
+
],
|
| 150 |
+
"hidden_act": "silu",
|
| 151 |
+
"hidden_size": 1280,
|
| 152 |
+
"in_channels": 3,
|
| 153 |
+
"in_chans": 3,
|
| 154 |
+
"initializer_range": 0.02,
|
| 155 |
+
"intermediate_size": 3456,
|
| 156 |
+
"model_type": "qwen2_5_vl",
|
| 157 |
+
"num_heads": 16,
|
| 158 |
+
"out_hidden_size": 5120,
|
| 159 |
+
"patch_size": 14,
|
| 160 |
+
"spatial_merge_size": 2,
|
| 161 |
+
"spatial_patch_size": 14,
|
| 162 |
+
"temporal_patch_size": 2,
|
| 163 |
+
"tokens_per_second": 2,
|
| 164 |
+
"torch_dtype": "float32",
|
| 165 |
+
"window_size": 112
|
| 166 |
+
},
|
| 167 |
+
"vision_end_token_id": 151653,
|
| 168 |
+
"vision_start_token_id": 151652,
|
| 169 |
+
"vision_token_id": 151654,
|
| 170 |
+
"vocab_size": 152064
|
| 171 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 1e-06,
|
| 11 |
+
"transformers_version": "4.55.0"
|
| 12 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step3200
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c80ccaccbc028fca6ea6ae27742069b3bd1ed27eaddbf31574d5fe6f1dc6170
|
| 3 |
+
size 4958700928
|
model-00002-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:047e7bf224566c9d68c983a49fed2006871b1fdff8812bf07e5ff20ae0733ca0
|
| 3 |
+
size 4928488272
|
model-00003-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3238f89dad1e5c7f6c2ca6c240fc022af6f5d6398ae08ba7b1363ac5cf808e4a
|
| 3 |
+
size 4876059368
|
model-00004-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c83a7f2174834d1b29f2d2955329a412c7ea6cd9cd6f506d605b94b975c97a38
|
| 3 |
+
size 4876059416
|
model-00005-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4559e7e8b36d1725e007b38043789c747bfbe1064a4492ecba8c4dd3112df120
|
| 3 |
+
size 4876059416
|
model-00006-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6414c7f064583da361975ecdc845c7712b292b9cb5fbf8b2eac96c08566ec5d5
|
| 3 |
+
size 4876059416
|
model-00007-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7124088eb7e629f626ab40ac80d92ade25d74a768f051fed1fe8678453f38de
|
| 3 |
+
size 4876059416
|
model-00008-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f52eafa2b009d33f0bb5f4448494dcc40d835593609c4c7dd4301b6488a55a9e
|
| 3 |
+
size 4876059416
|
model-00009-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed6ba6b0dc5740d83bec4da11ff717ca5b61460aa1a5fb90be84078681f9b345
|
| 3 |
+
size 4876059416
|
model-00010-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae5c76a6f2585d8a070c45caed6ccae1101f77291c4c8cd80ae54e3abb390c11
|
| 3 |
+
size 4876059416
|
model-00011-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65eb0e667f9df9a81ee95a67ffacb539dd592761d8b79d885dd22f48706798de
|
| 3 |
+
size 4876059416
|
model-00012-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f69106f8dc9e0202510709c7cbfafe763035bad3210d68144ef0d3c2ef8b3d5
|
| 3 |
+
size 4876059416
|
model-00013-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e5d5248c193743ba83f2a98d23137971e3aa77345741201b17cfa70957e50e3
|
| 3 |
+
size 4876059416
|
model-00014-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:967b6994de5726afaafd7f6114b2aeead862499f441b563493c2a45937c68fca
|
| 3 |
+
size 3381725320
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,1169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 1638656,
|
| 4 |
+
"total_size": 66905436672
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00014-of-00014.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00014.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 33 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 45 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 57 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 69 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 80 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 81 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 82 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 83 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 84 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 85 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 92 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 93 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 94 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 95 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 96 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 97 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 104 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 105 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 106 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 107 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 108 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 109 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 117 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 128 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 129 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 130 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 131 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 132 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 133 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 140 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 141 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 142 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 143 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 144 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 145 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 152 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 153 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 154 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 155 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 156 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 157 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 164 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 165 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 166 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 167 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 168 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 169 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 176 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 177 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 178 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 179 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 180 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 181 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 188 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 189 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 190 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 191 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 192 |
+
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 193 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 200 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 201 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 202 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 203 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 204 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 205 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 212 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 213 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 214 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 215 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 216 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 217 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 224 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 225 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 226 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 227 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 228 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 229 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 236 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 237 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 238 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 239 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 240 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 241 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 248 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 249 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 250 |
+
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 251 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 252 |
+
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 253 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 260 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 261 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 262 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 263 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 264 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 265 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 271 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 272 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 273 |
+
"model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 274 |
+
"model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 275 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 276 |
+
"model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 277 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 283 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 284 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 285 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 286 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 287 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 288 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 289 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 295 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 296 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 297 |
+
"model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 298 |
+
"model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 299 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 300 |
+
"model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 301 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 307 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 308 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 309 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 310 |
+
"model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 311 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 312 |
+
"model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 313 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 319 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 320 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 321 |
+
"model.layers.32.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 322 |
+
"model.layers.32.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 323 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 324 |
+
"model.layers.32.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 325 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 331 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 332 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 333 |
+
"model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 334 |
+
"model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 335 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 336 |
+
"model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 337 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 343 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 344 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 345 |
+
"model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 346 |
+
"model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 347 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 348 |
+
"model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 349 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 355 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 356 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 357 |
+
"model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 358 |
+
"model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 359 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 360 |
+
"model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 361 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 367 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 368 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 369 |
+
"model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 370 |
+
"model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 371 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 372 |
+
"model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 373 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 374 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 375 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 376 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 377 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 378 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 379 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 380 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 381 |
+
"model.layers.37.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 382 |
+
"model.layers.37.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 383 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 384 |
+
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 385 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 386 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 387 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 388 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 389 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 390 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 391 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 392 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 393 |
+
"model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 394 |
+
"model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 395 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 396 |
+
"model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 397 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 398 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 399 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 400 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 401 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 402 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 403 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 404 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 405 |
+
"model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 406 |
+
"model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 407 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 408 |
+
"model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 409 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 410 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 411 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 412 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 413 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 414 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 415 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 416 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 417 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 418 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 419 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 420 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 421 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 422 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
| 423 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 424 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 425 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 426 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 427 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 428 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 429 |
+
"model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 430 |
+
"model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 431 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 432 |
+
"model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 433 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 434 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 435 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 436 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 437 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 438 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 439 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 440 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 441 |
+
"model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 442 |
+
"model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 443 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 444 |
+
"model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 445 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 446 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 447 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 448 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 449 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 450 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 451 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 452 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 453 |
+
"model.layers.42.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 454 |
+
"model.layers.42.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 455 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 456 |
+
"model.layers.42.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 457 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 458 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 459 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 460 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 461 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 462 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 463 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 464 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 465 |
+
"model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 466 |
+
"model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 467 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 468 |
+
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 469 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 470 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 471 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 472 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 473 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 474 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 475 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 476 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 477 |
+
"model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 478 |
+
"model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 479 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 480 |
+
"model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 481 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 482 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 483 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 484 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 485 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 486 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 487 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 488 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 489 |
+
"model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 490 |
+
"model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 491 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 492 |
+
"model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 493 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 494 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 495 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 496 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 497 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 498 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 499 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 500 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 501 |
+
"model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 502 |
+
"model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 503 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 504 |
+
"model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 505 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 506 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 507 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 508 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 509 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 510 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 511 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 512 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 513 |
+
"model.layers.47.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 514 |
+
"model.layers.47.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 515 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 516 |
+
"model.layers.47.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 517 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 518 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 519 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 520 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 521 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 522 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 523 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 524 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 525 |
+
"model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 526 |
+
"model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 527 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 528 |
+
"model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 529 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 530 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 531 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 532 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 533 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 534 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 535 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 536 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 537 |
+
"model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 538 |
+
"model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 539 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 540 |
+
"model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 541 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 542 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 543 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 544 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 545 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 546 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 547 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 548 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 549 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 550 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 551 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 552 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 553 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 554 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
| 555 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 556 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 557 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 558 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 559 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 560 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 561 |
+
"model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 562 |
+
"model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 563 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 564 |
+
"model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 565 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 566 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 567 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 568 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 569 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 570 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 571 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 572 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 573 |
+
"model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 574 |
+
"model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 575 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 576 |
+
"model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 577 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 578 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 579 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 580 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 581 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 582 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 583 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 584 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 585 |
+
"model.layers.52.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 586 |
+
"model.layers.52.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 587 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 588 |
+
"model.layers.52.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 589 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 590 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 591 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 592 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 593 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 594 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 595 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 596 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 597 |
+
"model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 598 |
+
"model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 599 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 600 |
+
"model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 601 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 602 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 603 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 604 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 605 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 606 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 607 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 608 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 609 |
+
"model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 610 |
+
"model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 611 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 612 |
+
"model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 613 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 614 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 615 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 616 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 617 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 618 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 619 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 620 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 621 |
+
"model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 622 |
+
"model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 623 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 624 |
+
"model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 625 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 626 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 627 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 628 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 629 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 630 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 631 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 632 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 633 |
+
"model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 634 |
+
"model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 635 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 636 |
+
"model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 637 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 638 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 639 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 640 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 641 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 642 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 643 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 644 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 645 |
+
"model.layers.57.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 646 |
+
"model.layers.57.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 647 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 648 |
+
"model.layers.57.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 649 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 650 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 651 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 652 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 653 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 654 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 655 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 656 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 657 |
+
"model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 658 |
+
"model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 659 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 660 |
+
"model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 661 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 662 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 663 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 664 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 665 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 666 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 667 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 668 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 669 |
+
"model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 670 |
+
"model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 671 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 672 |
+
"model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 673 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 674 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 675 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 676 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 677 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 678 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 679 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 680 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 681 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 682 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 683 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 684 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 685 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 686 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
| 687 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 688 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 689 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 690 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 691 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 692 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 693 |
+
"model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 694 |
+
"model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 695 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 696 |
+
"model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 697 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 698 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 699 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 700 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 701 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 702 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 703 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 704 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 705 |
+
"model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 706 |
+
"model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 707 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 708 |
+
"model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 709 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 710 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 711 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 712 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 713 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 714 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 715 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 716 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 717 |
+
"model.layers.62.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 718 |
+
"model.layers.62.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 719 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 720 |
+
"model.layers.62.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 721 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 722 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 723 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 724 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 725 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 726 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 727 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 728 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 729 |
+
"model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 730 |
+
"model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 731 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 732 |
+
"model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 733 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 734 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00014-of-00014.safetensors",
|
| 735 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00014-of-00014.safetensors",
|
| 736 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 737 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00014-of-00014.safetensors",
|
| 738 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 739 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00014-of-00014.safetensors",
|
| 740 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00014-of-00014.safetensors",
|
| 741 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 742 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 743 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 744 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 745 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 746 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
| 747 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 748 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 749 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 750 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 751 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 752 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 753 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 754 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 755 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 756 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 757 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 758 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 759 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 760 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 761 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 762 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 763 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 764 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 765 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 766 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 767 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 768 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 769 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 770 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 771 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 772 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 773 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 774 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 775 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 776 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 777 |
+
"model.norm.weight": "model-00014-of-00014.safetensors",
|
| 778 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 779 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 780 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 781 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 782 |
+
"visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 783 |
+
"visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 784 |
+
"visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 785 |
+
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 786 |
+
"visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 787 |
+
"visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 788 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00014.safetensors",
|
| 789 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00014.safetensors",
|
| 790 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 791 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 792 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 793 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 794 |
+
"visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 795 |
+
"visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 796 |
+
"visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 797 |
+
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 798 |
+
"visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 799 |
+
"visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 800 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00014.safetensors",
|
| 801 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00014.safetensors",
|
| 802 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 803 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 804 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 805 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 806 |
+
"visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 807 |
+
"visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 808 |
+
"visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 809 |
+
"visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 810 |
+
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 811 |
+
"visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 812 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00014.safetensors",
|
| 813 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00014.safetensors",
|
| 814 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 815 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 816 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 817 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 818 |
+
"visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 819 |
+
"visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 820 |
+
"visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 821 |
+
"visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 822 |
+
"visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 823 |
+
"visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 824 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00014.safetensors",
|
| 825 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00014.safetensors",
|
| 826 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 827 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 828 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 829 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 830 |
+
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 831 |
+
"visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 832 |
+
"visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 833 |
+
"visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 834 |
+
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 835 |
+
"visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 836 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00014.safetensors",
|
| 837 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00014.safetensors",
|
| 838 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 839 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 840 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 841 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 842 |
+
"visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 843 |
+
"visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 844 |
+
"visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 845 |
+
"visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 846 |
+
"visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 847 |
+
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 848 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00014.safetensors",
|
| 849 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00014.safetensors",
|
| 850 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 851 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 852 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 853 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 854 |
+
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 855 |
+
"visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 856 |
+
"visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 857 |
+
"visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 858 |
+
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 859 |
+
"visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 860 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00014.safetensors",
|
| 861 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00014.safetensors",
|
| 862 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 863 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 864 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 865 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 866 |
+
"visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 867 |
+
"visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 868 |
+
"visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 869 |
+
"visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 870 |
+
"visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 871 |
+
"visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 872 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00014.safetensors",
|
| 873 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00014.safetensors",
|
| 874 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 875 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 876 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 877 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 878 |
+
"visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 879 |
+
"visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 880 |
+
"visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 881 |
+
"visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 882 |
+
"visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 883 |
+
"visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 884 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00014.safetensors",
|
| 885 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00014.safetensors",
|
| 886 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 887 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 888 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 889 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 890 |
+
"visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 891 |
+
"visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 892 |
+
"visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 893 |
+
"visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 894 |
+
"visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 895 |
+
"visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 896 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00014.safetensors",
|
| 897 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00014.safetensors",
|
| 898 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 899 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 900 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 901 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 902 |
+
"visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 903 |
+
"visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 904 |
+
"visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 905 |
+
"visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 906 |
+
"visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 907 |
+
"visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 908 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00014.safetensors",
|
| 909 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00014.safetensors",
|
| 910 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 911 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 912 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 913 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 914 |
+
"visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 915 |
+
"visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 916 |
+
"visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 917 |
+
"visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 918 |
+
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 919 |
+
"visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 920 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00014.safetensors",
|
| 921 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00014.safetensors",
|
| 922 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 923 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 924 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 925 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 926 |
+
"visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 927 |
+
"visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 928 |
+
"visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 929 |
+
"visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 930 |
+
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 931 |
+
"visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 932 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00014.safetensors",
|
| 933 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00014.safetensors",
|
| 934 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 935 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 936 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 937 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 938 |
+
"visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 939 |
+
"visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 940 |
+
"visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 941 |
+
"visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 942 |
+
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 943 |
+
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 944 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00014.safetensors",
|
| 945 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00014.safetensors",
|
| 946 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 947 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 948 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 949 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 950 |
+
"visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 951 |
+
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 952 |
+
"visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 953 |
+
"visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 954 |
+
"visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 955 |
+
"visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 956 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00014.safetensors",
|
| 957 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00014.safetensors",
|
| 958 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 959 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 960 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 961 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 962 |
+
"visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 963 |
+
"visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 964 |
+
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 965 |
+
"visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 966 |
+
"visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 967 |
+
"visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 968 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00014.safetensors",
|
| 969 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00014.safetensors",
|
| 970 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 971 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 972 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 973 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 974 |
+
"visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 975 |
+
"visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 976 |
+
"visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 977 |
+
"visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 978 |
+
"visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 979 |
+
"visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 980 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00014.safetensors",
|
| 981 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00014.safetensors",
|
| 982 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 983 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 984 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 985 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 986 |
+
"visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 987 |
+
"visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 988 |
+
"visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 989 |
+
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 990 |
+
"visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 991 |
+
"visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 992 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00014.safetensors",
|
| 993 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00014.safetensors",
|
| 994 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 995 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 996 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 997 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 998 |
+
"visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 999 |
+
"visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1000 |
+
"visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1001 |
+
"visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1002 |
+
"visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1003 |
+
"visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1004 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1005 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1006 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1007 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1008 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1009 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1010 |
+
"visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1011 |
+
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1012 |
+
"visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1013 |
+
"visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1014 |
+
"visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1015 |
+
"visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1016 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1017 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1018 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1019 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1020 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1021 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1022 |
+
"visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1023 |
+
"visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1024 |
+
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1025 |
+
"visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1026 |
+
"visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1027 |
+
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1028 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1029 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1030 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1031 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1032 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1033 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1034 |
+
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1035 |
+
"visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1036 |
+
"visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1037 |
+
"visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1038 |
+
"visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1039 |
+
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1040 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1041 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1042 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1043 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1044 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1045 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1046 |
+
"visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1047 |
+
"visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1048 |
+
"visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1049 |
+
"visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1050 |
+
"visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1051 |
+
"visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1052 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1053 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1054 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1055 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1056 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1057 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1058 |
+
"visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1059 |
+
"visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1060 |
+
"visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1061 |
+
"visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1062 |
+
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1063 |
+
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1064 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1065 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1066 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1067 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1068 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1069 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1070 |
+
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1071 |
+
"visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1072 |
+
"visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1073 |
+
"visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1074 |
+
"visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1075 |
+
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1076 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1077 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1078 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1079 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1080 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1081 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1082 |
+
"visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1083 |
+
"visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1084 |
+
"visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1085 |
+
"visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1086 |
+
"visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1087 |
+
"visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1088 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1089 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1090 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1091 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1092 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1093 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1094 |
+
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1095 |
+
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1096 |
+
"visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1097 |
+
"visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1098 |
+
"visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1099 |
+
"visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1100 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1101 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1102 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1103 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1104 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1105 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1106 |
+
"visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1107 |
+
"visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1108 |
+
"visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1109 |
+
"visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1110 |
+
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1111 |
+
"visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1112 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1113 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1114 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1115 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1116 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1117 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1118 |
+
"visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1119 |
+
"visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1120 |
+
"visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1121 |
+
"visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1122 |
+
"visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1123 |
+
"visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1124 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1125 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1126 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1127 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1128 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1129 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1130 |
+
"visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1131 |
+
"visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1132 |
+
"visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1133 |
+
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1134 |
+
"visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1135 |
+
"visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1136 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1137 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1138 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1139 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1140 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1141 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1142 |
+
"visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1143 |
+
"visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1144 |
+
"visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1145 |
+
"visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1146 |
+
"visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1147 |
+
"visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1148 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1149 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1150 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1151 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1152 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1153 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 1154 |
+
"visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1155 |
+
"visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1156 |
+
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1157 |
+
"visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1158 |
+
"visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1159 |
+
"visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1160 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1161 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1162 |
+
"visual.merger.ln_q.weight": "model-00001-of-00014.safetensors",
|
| 1163 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00014.safetensors",
|
| 1164 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00014.safetensors",
|
| 1165 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00014.safetensors",
|
| 1166 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00014.safetensors",
|
| 1167 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00014.safetensors"
|
| 1168 |
+
}
|
| 1169 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": null,
|
| 3 |
+
"data_format": "channels_first",
|
| 4 |
+
"default_to_square": true,
|
| 5 |
+
"device": null,
|
| 6 |
+
"disable_grouping": null,
|
| 7 |
+
"do_center_crop": null,
|
| 8 |
+
"do_convert_rgb": true,
|
| 9 |
+
"do_normalize": true,
|
| 10 |
+
"do_rescale": true,
|
| 11 |
+
"do_resize": true,
|
| 12 |
+
"image_mean": [
|
| 13 |
+
0.48145466,
|
| 14 |
+
0.4578275,
|
| 15 |
+
0.40821073
|
| 16 |
+
],
|
| 17 |
+
"image_processor_type": "Qwen2VLImageProcessorFast",
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.26862954,
|
| 20 |
+
0.26130258,
|
| 21 |
+
0.27577711
|
| 22 |
+
],
|
| 23 |
+
"input_data_format": null,
|
| 24 |
+
"max_pixels": 12845056,
|
| 25 |
+
"merge_size": 2,
|
| 26 |
+
"min_pixels": 3136,
|
| 27 |
+
"patch_size": 14,
|
| 28 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 29 |
+
"resample": 3,
|
| 30 |
+
"rescale_factor": 0.00392156862745098,
|
| 31 |
+
"return_tensors": null,
|
| 32 |
+
"size": {
|
| 33 |
+
"longest_edge": 12845056,
|
| 34 |
+
"shortest_edge": 3136
|
| 35 |
+
},
|
| 36 |
+
"temporal_patch_size": 2
|
| 37 |
+
}
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75881bc0e709c509b10f83b89a79347ce9120d3eec42882604a1ac7baa572563
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 1.0110567051018797,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 3200,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.00315905860053704,
|
| 14 |
+
"grad_norm": 4.247729183572734,
|
| 15 |
+
"learning_rate": 5.685407454200885e-08,
|
| 16 |
+
"loss": 0.6057,
|
| 17 |
+
"step": 10
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.00631811720107408,
|
| 21 |
+
"grad_norm": 4.531449453000221,
|
| 22 |
+
"learning_rate": 1.2002526847757423e-07,
|
| 23 |
+
"loss": 0.6101,
|
| 24 |
+
"step": 20
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.00947717580161112,
|
| 28 |
+
"grad_norm": 4.104292927990717,
|
| 29 |
+
"learning_rate": 1.831964624131396e-07,
|
| 30 |
+
"loss": 0.5947,
|
| 31 |
+
"step": 30
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.01263623440214816,
|
| 35 |
+
"grad_norm": 3.1655981231206747,
|
| 36 |
+
"learning_rate": 2.46367656348705e-07,
|
| 37 |
+
"loss": 0.5609,
|
| 38 |
+
"step": 40
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.0157952930026852,
|
| 42 |
+
"grad_norm": 1.6081249047797948,
|
| 43 |
+
"learning_rate": 3.095388502842704e-07,
|
| 44 |
+
"loss": 0.5128,
|
| 45 |
+
"step": 50
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.01895435160322224,
|
| 49 |
+
"grad_norm": 1.0896969313030245,
|
| 50 |
+
"learning_rate": 3.727100442198358e-07,
|
| 51 |
+
"loss": 0.4618,
|
| 52 |
+
"step": 60
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.02211341020375928,
|
| 56 |
+
"grad_norm": 0.720186068205468,
|
| 57 |
+
"learning_rate": 4.3588123815540116e-07,
|
| 58 |
+
"loss": 0.437,
|
| 59 |
+
"step": 70
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.02527246880429632,
|
| 63 |
+
"grad_norm": 0.5712683718673494,
|
| 64 |
+
"learning_rate": 4.990524320909665e-07,
|
| 65 |
+
"loss": 0.4145,
|
| 66 |
+
"step": 80
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.02843152740483336,
|
| 70 |
+
"grad_norm": 0.41839125700043645,
|
| 71 |
+
"learning_rate": 5.62223626026532e-07,
|
| 72 |
+
"loss": 0.3887,
|
| 73 |
+
"step": 90
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.0315905860053704,
|
| 77 |
+
"grad_norm": 0.33539615628708846,
|
| 78 |
+
"learning_rate": 6.253948199620974e-07,
|
| 79 |
+
"loss": 0.3661,
|
| 80 |
+
"step": 100
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.03474964460590744,
|
| 84 |
+
"grad_norm": 0.25866894040378646,
|
| 85 |
+
"learning_rate": 6.885660138976627e-07,
|
| 86 |
+
"loss": 0.352,
|
| 87 |
+
"step": 110
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.03790870320644448,
|
| 91 |
+
"grad_norm": 0.24295153980385867,
|
| 92 |
+
"learning_rate": 7.517372078332281e-07,
|
| 93 |
+
"loss": 0.3457,
|
| 94 |
+
"step": 120
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.04106776180698152,
|
| 98 |
+
"grad_norm": 0.28237511864322024,
|
| 99 |
+
"learning_rate": 8.149084017687935e-07,
|
| 100 |
+
"loss": 0.3345,
|
| 101 |
+
"step": 130
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.04422682040751856,
|
| 105 |
+
"grad_norm": 0.21156218948831834,
|
| 106 |
+
"learning_rate": 8.780795957043589e-07,
|
| 107 |
+
"loss": 0.3281,
|
| 108 |
+
"step": 140
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.0473858790080556,
|
| 112 |
+
"grad_norm": 0.20112450248918143,
|
| 113 |
+
"learning_rate": 9.412507896399242e-07,
|
| 114 |
+
"loss": 0.3267,
|
| 115 |
+
"step": 150
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.05054493760859264,
|
| 119 |
+
"grad_norm": 0.19763198530161658,
|
| 120 |
+
"learning_rate": 1.0044219835754897e-06,
|
| 121 |
+
"loss": 0.3206,
|
| 122 |
+
"step": 160
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.05370399620912968,
|
| 126 |
+
"grad_norm": 0.21467283595984932,
|
| 127 |
+
"learning_rate": 1.067593177511055e-06,
|
| 128 |
+
"loss": 0.3136,
|
| 129 |
+
"step": 170
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.05686305480966672,
|
| 133 |
+
"grad_norm": 0.18660741459520747,
|
| 134 |
+
"learning_rate": 1.1307643714466204e-06,
|
| 135 |
+
"loss": 0.3087,
|
| 136 |
+
"step": 180
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.06002211341020376,
|
| 140 |
+
"grad_norm": 0.21253735556196968,
|
| 141 |
+
"learning_rate": 1.1939355653821858e-06,
|
| 142 |
+
"loss": 0.3049,
|
| 143 |
+
"step": 190
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.0631811720107408,
|
| 147 |
+
"grad_norm": 0.237093634634235,
|
| 148 |
+
"learning_rate": 1.2571067593177513e-06,
|
| 149 |
+
"loss": 0.3005,
|
| 150 |
+
"step": 200
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.06634023061127783,
|
| 154 |
+
"grad_norm": 0.2231876630708564,
|
| 155 |
+
"learning_rate": 1.3202779532533167e-06,
|
| 156 |
+
"loss": 0.2972,
|
| 157 |
+
"step": 210
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.06949928921181488,
|
| 161 |
+
"grad_norm": 0.2017070855177483,
|
| 162 |
+
"learning_rate": 1.383449147188882e-06,
|
| 163 |
+
"loss": 0.2935,
|
| 164 |
+
"step": 220
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.07265834781235192,
|
| 168 |
+
"grad_norm": 0.21789091247744216,
|
| 169 |
+
"learning_rate": 1.4466203411244472e-06,
|
| 170 |
+
"loss": 0.29,
|
| 171 |
+
"step": 230
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.07581740641288896,
|
| 175 |
+
"grad_norm": 0.24210256044037484,
|
| 176 |
+
"learning_rate": 1.509791535060013e-06,
|
| 177 |
+
"loss": 0.289,
|
| 178 |
+
"step": 240
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.07897646501342599,
|
| 182 |
+
"grad_norm": 0.21139319424520517,
|
| 183 |
+
"learning_rate": 1.572962728995578e-06,
|
| 184 |
+
"loss": 0.2895,
|
| 185 |
+
"step": 250
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.08213552361396304,
|
| 189 |
+
"grad_norm": 0.20081643445857786,
|
| 190 |
+
"learning_rate": 1.6361339229311434e-06,
|
| 191 |
+
"loss": 0.2848,
|
| 192 |
+
"step": 260
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.08529458221450008,
|
| 196 |
+
"grad_norm": 0.21867950206393189,
|
| 197 |
+
"learning_rate": 1.6993051168667088e-06,
|
| 198 |
+
"loss": 0.2842,
|
| 199 |
+
"step": 270
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.08845364081503712,
|
| 203 |
+
"grad_norm": 0.1996646570779461,
|
| 204 |
+
"learning_rate": 1.7624763108022743e-06,
|
| 205 |
+
"loss": 0.2785,
|
| 206 |
+
"step": 280
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.09161269941557416,
|
| 210 |
+
"grad_norm": 0.1991696950635834,
|
| 211 |
+
"learning_rate": 1.8256475047378397e-06,
|
| 212 |
+
"loss": 0.2747,
|
| 213 |
+
"step": 290
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.0947717580161112,
|
| 217 |
+
"grad_norm": 0.21382346420276455,
|
| 218 |
+
"learning_rate": 1.888818698673405e-06,
|
| 219 |
+
"loss": 0.2778,
|
| 220 |
+
"step": 300
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.09793081661664824,
|
| 224 |
+
"grad_norm": 0.22163335945192605,
|
| 225 |
+
"learning_rate": 1.9519898926089704e-06,
|
| 226 |
+
"loss": 0.2747,
|
| 227 |
+
"step": 310
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.10108987521718528,
|
| 231 |
+
"grad_norm": 0.2338176849443747,
|
| 232 |
+
"learning_rate": 2.0151610865445357e-06,
|
| 233 |
+
"loss": 0.2719,
|
| 234 |
+
"step": 320
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.10424893381772232,
|
| 238 |
+
"grad_norm": 0.18002603770625134,
|
| 239 |
+
"learning_rate": 2.078332280480101e-06,
|
| 240 |
+
"loss": 0.2713,
|
| 241 |
+
"step": 330
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.10740799241825937,
|
| 245 |
+
"grad_norm": 0.19849866049815784,
|
| 246 |
+
"learning_rate": 2.1415034744156664e-06,
|
| 247 |
+
"loss": 0.2671,
|
| 248 |
+
"step": 340
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.1105670510187964,
|
| 252 |
+
"grad_norm": 0.18726127817800872,
|
| 253 |
+
"learning_rate": 2.2046746683512322e-06,
|
| 254 |
+
"loss": 0.2679,
|
| 255 |
+
"step": 350
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.11372610961933344,
|
| 259 |
+
"grad_norm": 0.18164666420060355,
|
| 260 |
+
"learning_rate": 2.2678458622867976e-06,
|
| 261 |
+
"loss": 0.2696,
|
| 262 |
+
"step": 360
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.11688516821987048,
|
| 266 |
+
"grad_norm": 0.188419554987382,
|
| 267 |
+
"learning_rate": 2.331017056222363e-06,
|
| 268 |
+
"loss": 0.2657,
|
| 269 |
+
"step": 370
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.12004422682040752,
|
| 273 |
+
"grad_norm": 0.21408765943095384,
|
| 274 |
+
"learning_rate": 2.394188250157928e-06,
|
| 275 |
+
"loss": 0.2631,
|
| 276 |
+
"step": 380
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.12320328542094455,
|
| 280 |
+
"grad_norm": 0.1728133517187042,
|
| 281 |
+
"learning_rate": 2.4573594440934936e-06,
|
| 282 |
+
"loss": 0.2627,
|
| 283 |
+
"step": 390
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.1263623440214816,
|
| 287 |
+
"grad_norm": 0.20446817453058305,
|
| 288 |
+
"learning_rate": 2.520530638029059e-06,
|
| 289 |
+
"loss": 0.2633,
|
| 290 |
+
"step": 400
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.12952140262201864,
|
| 294 |
+
"grad_norm": 0.2867541071966156,
|
| 295 |
+
"learning_rate": 2.5837018319646247e-06,
|
| 296 |
+
"loss": 0.2606,
|
| 297 |
+
"step": 410
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.13268046122255567,
|
| 301 |
+
"grad_norm": 0.19615186721360886,
|
| 302 |
+
"learning_rate": 2.6468730259001897e-06,
|
| 303 |
+
"loss": 0.2589,
|
| 304 |
+
"step": 420
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.13583951982309272,
|
| 308 |
+
"grad_norm": 0.17250843271916932,
|
| 309 |
+
"learning_rate": 2.710044219835755e-06,
|
| 310 |
+
"loss": 0.2578,
|
| 311 |
+
"step": 430
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.13899857842362975,
|
| 315 |
+
"grad_norm": 0.21061094083012397,
|
| 316 |
+
"learning_rate": 2.7732154137713208e-06,
|
| 317 |
+
"loss": 0.256,
|
| 318 |
+
"step": 440
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.1421576370241668,
|
| 322 |
+
"grad_norm": 0.16796761706106636,
|
| 323 |
+
"learning_rate": 2.8363866077068857e-06,
|
| 324 |
+
"loss": 0.254,
|
| 325 |
+
"step": 450
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.14531669562470384,
|
| 329 |
+
"grad_norm": 0.20087509437202522,
|
| 330 |
+
"learning_rate": 2.8995578016424515e-06,
|
| 331 |
+
"loss": 0.2554,
|
| 332 |
+
"step": 460
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.14847575422524087,
|
| 336 |
+
"grad_norm": 0.20431208429215614,
|
| 337 |
+
"learning_rate": 2.9627289955780164e-06,
|
| 338 |
+
"loss": 0.2524,
|
| 339 |
+
"step": 470
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.15163481282577793,
|
| 343 |
+
"grad_norm": 0.20436652455880414,
|
| 344 |
+
"learning_rate": 3.025900189513582e-06,
|
| 345 |
+
"loss": 0.2557,
|
| 346 |
+
"step": 480
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.15479387142631496,
|
| 350 |
+
"grad_norm": 0.19923295760265683,
|
| 351 |
+
"learning_rate": 3.0890713834491475e-06,
|
| 352 |
+
"loss": 0.252,
|
| 353 |
+
"step": 490
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.15795293002685198,
|
| 357 |
+
"grad_norm": 0.1925405706241213,
|
| 358 |
+
"learning_rate": 3.1522425773847125e-06,
|
| 359 |
+
"loss": 0.2505,
|
| 360 |
+
"step": 500
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.16111198862738904,
|
| 364 |
+
"grad_norm": 0.20206673704458114,
|
| 365 |
+
"learning_rate": 3.2154137713202782e-06,
|
| 366 |
+
"loss": 0.2501,
|
| 367 |
+
"step": 510
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.16427104722792607,
|
| 371 |
+
"grad_norm": 0.24333700245600473,
|
| 372 |
+
"learning_rate": 3.278584965255844e-06,
|
| 373 |
+
"loss": 0.2464,
|
| 374 |
+
"step": 520
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.16743010582846313,
|
| 378 |
+
"grad_norm": 0.18205244482695793,
|
| 379 |
+
"learning_rate": 3.341756159191409e-06,
|
| 380 |
+
"loss": 0.2485,
|
| 381 |
+
"step": 530
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.17058916442900016,
|
| 385 |
+
"grad_norm": 0.18264545298219137,
|
| 386 |
+
"learning_rate": 3.4049273531269743e-06,
|
| 387 |
+
"loss": 0.2456,
|
| 388 |
+
"step": 540
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.17374822302953719,
|
| 392 |
+
"grad_norm": 0.17873652388985004,
|
| 393 |
+
"learning_rate": 3.46809854706254e-06,
|
| 394 |
+
"loss": 0.248,
|
| 395 |
+
"step": 550
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.17690728163007424,
|
| 399 |
+
"grad_norm": 0.17062239190578055,
|
| 400 |
+
"learning_rate": 3.531269740998105e-06,
|
| 401 |
+
"loss": 0.2449,
|
| 402 |
+
"step": 560
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.18006634023061127,
|
| 406 |
+
"grad_norm": 0.19143037375033525,
|
| 407 |
+
"learning_rate": 3.5944409349336708e-06,
|
| 408 |
+
"loss": 0.2464,
|
| 409 |
+
"step": 570
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.18322539883114833,
|
| 413 |
+
"grad_norm": 0.1861722136519532,
|
| 414 |
+
"learning_rate": 3.6576121288692357e-06,
|
| 415 |
+
"loss": 0.2489,
|
| 416 |
+
"step": 580
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.18638445743168536,
|
| 420 |
+
"grad_norm": 0.1680077751454427,
|
| 421 |
+
"learning_rate": 3.7207833228048014e-06,
|
| 422 |
+
"loss": 0.2433,
|
| 423 |
+
"step": 590
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.1895435160322224,
|
| 427 |
+
"grad_norm": 0.1827874982767101,
|
| 428 |
+
"learning_rate": 3.783954516740367e-06,
|
| 429 |
+
"loss": 0.2414,
|
| 430 |
+
"step": 600
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.19270257463275944,
|
| 434 |
+
"grad_norm": 0.17739754432609572,
|
| 435 |
+
"learning_rate": 3.847125710675932e-06,
|
| 436 |
+
"loss": 0.2439,
|
| 437 |
+
"step": 610
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.19586163323329647,
|
| 441 |
+
"grad_norm": 0.18166974193276042,
|
| 442 |
+
"learning_rate": 3.910296904611497e-06,
|
| 443 |
+
"loss": 0.2427,
|
| 444 |
+
"step": 620
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.19902069183383353,
|
| 448 |
+
"grad_norm": 0.23535305540149423,
|
| 449 |
+
"learning_rate": 3.973468098547063e-06,
|
| 450 |
+
"loss": 0.2397,
|
| 451 |
+
"step": 630
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.20217975043437056,
|
| 455 |
+
"grad_norm": 0.17950832267537836,
|
| 456 |
+
"learning_rate": 4.036639292482628e-06,
|
| 457 |
+
"loss": 0.2413,
|
| 458 |
+
"step": 640
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.2053388090349076,
|
| 462 |
+
"grad_norm": 0.1871436271310335,
|
| 463 |
+
"learning_rate": 4.099810486418194e-06,
|
| 464 |
+
"loss": 0.2392,
|
| 465 |
+
"step": 650
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.20849786763544464,
|
| 469 |
+
"grad_norm": 0.18940758631882895,
|
| 470 |
+
"learning_rate": 4.162981680353759e-06,
|
| 471 |
+
"loss": 0.239,
|
| 472 |
+
"step": 660
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.21165692623598167,
|
| 476 |
+
"grad_norm": 0.18679899786034626,
|
| 477 |
+
"learning_rate": 4.226152874289325e-06,
|
| 478 |
+
"loss": 0.2394,
|
| 479 |
+
"step": 670
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.21481598483651873,
|
| 483 |
+
"grad_norm": 0.2005980889421409,
|
| 484 |
+
"learning_rate": 4.28932406822489e-06,
|
| 485 |
+
"loss": 0.2369,
|
| 486 |
+
"step": 680
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.21797504343705576,
|
| 490 |
+
"grad_norm": 0.18654971719873092,
|
| 491 |
+
"learning_rate": 4.3524952621604545e-06,
|
| 492 |
+
"loss": 0.2372,
|
| 493 |
+
"step": 690
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.2211341020375928,
|
| 497 |
+
"grad_norm": 0.19896341390367112,
|
| 498 |
+
"learning_rate": 4.415666456096021e-06,
|
| 499 |
+
"loss": 0.2384,
|
| 500 |
+
"step": 700
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.22429316063812985,
|
| 504 |
+
"grad_norm": 0.1824518487303919,
|
| 505 |
+
"learning_rate": 4.478837650031586e-06,
|
| 506 |
+
"loss": 0.2322,
|
| 507 |
+
"step": 710
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.22745221923866688,
|
| 511 |
+
"grad_norm": 0.19030275242513275,
|
| 512 |
+
"learning_rate": 4.542008843967151e-06,
|
| 513 |
+
"loss": 0.2373,
|
| 514 |
+
"step": 720
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.2306112778392039,
|
| 518 |
+
"grad_norm": 0.18760298890701887,
|
| 519 |
+
"learning_rate": 4.605180037902717e-06,
|
| 520 |
+
"loss": 0.2345,
|
| 521 |
+
"step": 730
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.23377033643974096,
|
| 525 |
+
"grad_norm": 0.15845613302953646,
|
| 526 |
+
"learning_rate": 4.668351231838282e-06,
|
| 527 |
+
"loss": 0.2343,
|
| 528 |
+
"step": 740
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.236929395040278,
|
| 532 |
+
"grad_norm": 0.1710181463737659,
|
| 533 |
+
"learning_rate": 4.7315224257738475e-06,
|
| 534 |
+
"loss": 0.2318,
|
| 535 |
+
"step": 750
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.24008845364081505,
|
| 539 |
+
"grad_norm": 0.23880301915969937,
|
| 540 |
+
"learning_rate": 4.794693619709413e-06,
|
| 541 |
+
"loss": 0.2339,
|
| 542 |
+
"step": 760
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.24324751224135208,
|
| 546 |
+
"grad_norm": 0.1678386308387805,
|
| 547 |
+
"learning_rate": 4.857864813644978e-06,
|
| 548 |
+
"loss": 0.2306,
|
| 549 |
+
"step": 770
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.2464065708418891,
|
| 553 |
+
"grad_norm": 0.1671346172529239,
|
| 554 |
+
"learning_rate": 4.9210360075805435e-06,
|
| 555 |
+
"loss": 0.2333,
|
| 556 |
+
"step": 780
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.24956562944242616,
|
| 560 |
+
"grad_norm": 0.19944596405981949,
|
| 561 |
+
"learning_rate": 4.984207201516109e-06,
|
| 562 |
+
"loss": 0.2313,
|
| 563 |
+
"step": 790
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.2527246880429632,
|
| 567 |
+
"grad_norm": 0.18321786541799437,
|
| 568 |
+
"learning_rate": 5.047378395451674e-06,
|
| 569 |
+
"loss": 0.2321,
|
| 570 |
+
"step": 800
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.2558837466435002,
|
| 574 |
+
"grad_norm": 0.16781254221044775,
|
| 575 |
+
"learning_rate": 5.11054958938724e-06,
|
| 576 |
+
"loss": 0.2313,
|
| 577 |
+
"step": 810
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.2590428052440373,
|
| 581 |
+
"grad_norm": 0.17492747555934146,
|
| 582 |
+
"learning_rate": 5.173720783322806e-06,
|
| 583 |
+
"loss": 0.2312,
|
| 584 |
+
"step": 820
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.26220186384457433,
|
| 588 |
+
"grad_norm": 0.17965819326676355,
|
| 589 |
+
"learning_rate": 5.23689197725837e-06,
|
| 590 |
+
"loss": 0.2285,
|
| 591 |
+
"step": 830
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.26536092244511134,
|
| 595 |
+
"grad_norm": 0.16804749386309387,
|
| 596 |
+
"learning_rate": 5.3000631711939365e-06,
|
| 597 |
+
"loss": 0.2282,
|
| 598 |
+
"step": 840
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.2685199810456484,
|
| 602 |
+
"grad_norm": 0.1723473524041935,
|
| 603 |
+
"learning_rate": 5.363234365129502e-06,
|
| 604 |
+
"loss": 0.2296,
|
| 605 |
+
"step": 850
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.27167903964618545,
|
| 609 |
+
"grad_norm": 0.20773827836779976,
|
| 610 |
+
"learning_rate": 5.426405559065066e-06,
|
| 611 |
+
"loss": 0.2273,
|
| 612 |
+
"step": 860
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.27483809824672245,
|
| 616 |
+
"grad_norm": 0.1641196545454829,
|
| 617 |
+
"learning_rate": 5.489576753000632e-06,
|
| 618 |
+
"loss": 0.2301,
|
| 619 |
+
"step": 870
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.2779971568472595,
|
| 623 |
+
"grad_norm": 0.19323437206655858,
|
| 624 |
+
"learning_rate": 5.552747946936198e-06,
|
| 625 |
+
"loss": 0.2249,
|
| 626 |
+
"step": 880
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.28115621544779656,
|
| 630 |
+
"grad_norm": 0.18267311407058162,
|
| 631 |
+
"learning_rate": 5.615919140871763e-06,
|
| 632 |
+
"loss": 0.227,
|
| 633 |
+
"step": 890
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.2843152740483336,
|
| 637 |
+
"grad_norm": 0.19801209807316134,
|
| 638 |
+
"learning_rate": 5.679090334807328e-06,
|
| 639 |
+
"loss": 0.2273,
|
| 640 |
+
"step": 900
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.2874743326488706,
|
| 644 |
+
"grad_norm": 0.17413734456766244,
|
| 645 |
+
"learning_rate": 5.742261528742894e-06,
|
| 646 |
+
"loss": 0.2267,
|
| 647 |
+
"step": 910
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.2906333912494077,
|
| 651 |
+
"grad_norm": 0.21136423644297928,
|
| 652 |
+
"learning_rate": 5.805432722678459e-06,
|
| 653 |
+
"loss": 0.2263,
|
| 654 |
+
"step": 920
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.29379244984994474,
|
| 658 |
+
"grad_norm": 0.20233679461777548,
|
| 659 |
+
"learning_rate": 5.868603916614024e-06,
|
| 660 |
+
"loss": 0.2263,
|
| 661 |
+
"step": 930
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.29695150845048174,
|
| 665 |
+
"grad_norm": 0.19521629273254087,
|
| 666 |
+
"learning_rate": 5.93177511054959e-06,
|
| 667 |
+
"loss": 0.2269,
|
| 668 |
+
"step": 940
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.3001105670510188,
|
| 672 |
+
"grad_norm": 0.1696883052949813,
|
| 673 |
+
"learning_rate": 5.994946304485155e-06,
|
| 674 |
+
"loss": 0.2265,
|
| 675 |
+
"step": 950
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.30326962565155585,
|
| 679 |
+
"grad_norm": 0.18758477411326932,
|
| 680 |
+
"learning_rate": 6.058117498420721e-06,
|
| 681 |
+
"loss": 0.2247,
|
| 682 |
+
"step": 960
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.30642868425209285,
|
| 686 |
+
"grad_norm": 0.1897879092670083,
|
| 687 |
+
"learning_rate": 6.121288692356287e-06,
|
| 688 |
+
"loss": 0.2282,
|
| 689 |
+
"step": 970
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.3095877428526299,
|
| 693 |
+
"grad_norm": 0.18304573332433055,
|
| 694 |
+
"learning_rate": 6.184459886291851e-06,
|
| 695 |
+
"loss": 0.2223,
|
| 696 |
+
"step": 980
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.31274680145316697,
|
| 700 |
+
"grad_norm": 0.1782561802917822,
|
| 701 |
+
"learning_rate": 6.247631080227417e-06,
|
| 702 |
+
"loss": 0.224,
|
| 703 |
+
"step": 990
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.31590586005370397,
|
| 707 |
+
"grad_norm": 0.20741862373031386,
|
| 708 |
+
"learning_rate": 6.310802274162983e-06,
|
| 709 |
+
"loss": 0.2219,
|
| 710 |
+
"step": 1000
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.319064918654241,
|
| 714 |
+
"grad_norm": 0.1539256973132976,
|
| 715 |
+
"learning_rate": 6.373973468098547e-06,
|
| 716 |
+
"loss": 0.2207,
|
| 717 |
+
"step": 1010
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.3222239772547781,
|
| 721 |
+
"grad_norm": 0.16875500034138524,
|
| 722 |
+
"learning_rate": 6.437144662034113e-06,
|
| 723 |
+
"loss": 0.2225,
|
| 724 |
+
"step": 1020
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.32538303585531514,
|
| 728 |
+
"grad_norm": 0.17168781652376466,
|
| 729 |
+
"learning_rate": 6.500315855969679e-06,
|
| 730 |
+
"loss": 0.22,
|
| 731 |
+
"step": 1030
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.32854209445585214,
|
| 735 |
+
"grad_norm": 0.18011584935641983,
|
| 736 |
+
"learning_rate": 6.563487049905244e-06,
|
| 737 |
+
"loss": 0.2216,
|
| 738 |
+
"step": 1040
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.3317011530563892,
|
| 742 |
+
"grad_norm": 0.19414711454837585,
|
| 743 |
+
"learning_rate": 6.626658243840809e-06,
|
| 744 |
+
"loss": 0.2249,
|
| 745 |
+
"step": 1050
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.33486021165692625,
|
| 749 |
+
"grad_norm": 0.2103163638452648,
|
| 750 |
+
"learning_rate": 6.689829437776375e-06,
|
| 751 |
+
"loss": 0.2242,
|
| 752 |
+
"step": 1060
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.33801927025746326,
|
| 756 |
+
"grad_norm": 0.17555158548112104,
|
| 757 |
+
"learning_rate": 6.75300063171194e-06,
|
| 758 |
+
"loss": 0.2206,
|
| 759 |
+
"step": 1070
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.3411783288580003,
|
| 763 |
+
"grad_norm": 0.16163792223112092,
|
| 764 |
+
"learning_rate": 6.816171825647505e-06,
|
| 765 |
+
"loss": 0.221,
|
| 766 |
+
"step": 1080
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.34433738745853737,
|
| 770 |
+
"grad_norm": 0.17047037019662084,
|
| 771 |
+
"learning_rate": 6.87934301958307e-06,
|
| 772 |
+
"loss": 0.2222,
|
| 773 |
+
"step": 1090
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.34749644605907437,
|
| 777 |
+
"grad_norm": 0.18118959670707843,
|
| 778 |
+
"learning_rate": 6.942514213518636e-06,
|
| 779 |
+
"loss": 0.226,
|
| 780 |
+
"step": 1100
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.35065550465961143,
|
| 784 |
+
"grad_norm": 0.18596851555170507,
|
| 785 |
+
"learning_rate": 7.005685407454202e-06,
|
| 786 |
+
"loss": 0.2208,
|
| 787 |
+
"step": 1110
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.3538145632601485,
|
| 791 |
+
"grad_norm": 0.17540680145260182,
|
| 792 |
+
"learning_rate": 7.068856601389766e-06,
|
| 793 |
+
"loss": 0.2228,
|
| 794 |
+
"step": 1120
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.35697362186068554,
|
| 798 |
+
"grad_norm": 0.16362413537591447,
|
| 799 |
+
"learning_rate": 7.1320277953253324e-06,
|
| 800 |
+
"loss": 0.2199,
|
| 801 |
+
"step": 1130
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.36013268046122254,
|
| 805 |
+
"grad_norm": 0.16388409560788866,
|
| 806 |
+
"learning_rate": 7.195198989260898e-06,
|
| 807 |
+
"loss": 0.2183,
|
| 808 |
+
"step": 1140
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.3632917390617596,
|
| 812 |
+
"grad_norm": 0.16780920971825364,
|
| 813 |
+
"learning_rate": 7.258370183196462e-06,
|
| 814 |
+
"loss": 0.2223,
|
| 815 |
+
"step": 1150
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.36645079766229666,
|
| 819 |
+
"grad_norm": 0.16629698944531449,
|
| 820 |
+
"learning_rate": 7.3215413771320285e-06,
|
| 821 |
+
"loss": 0.2184,
|
| 822 |
+
"step": 1160
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.36960985626283366,
|
| 826 |
+
"grad_norm": 0.1760306249090938,
|
| 827 |
+
"learning_rate": 7.384712571067594e-06,
|
| 828 |
+
"loss": 0.2219,
|
| 829 |
+
"step": 1170
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.3727689148633707,
|
| 833 |
+
"grad_norm": 0.1790776173967007,
|
| 834 |
+
"learning_rate": 7.447883765003159e-06,
|
| 835 |
+
"loss": 0.2198,
|
| 836 |
+
"step": 1180
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.37592797346390777,
|
| 840 |
+
"grad_norm": 0.1857393797937426,
|
| 841 |
+
"learning_rate": 7.5110549589387245e-06,
|
| 842 |
+
"loss": 0.2183,
|
| 843 |
+
"step": 1190
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.3790870320644448,
|
| 847 |
+
"grad_norm": 0.18072716423697788,
|
| 848 |
+
"learning_rate": 7.57422615287429e-06,
|
| 849 |
+
"loss": 0.2198,
|
| 850 |
+
"step": 1200
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.38224609066498183,
|
| 854 |
+
"grad_norm": 0.1627749965589205,
|
| 855 |
+
"learning_rate": 7.637397346809855e-06,
|
| 856 |
+
"loss": 0.2204,
|
| 857 |
+
"step": 1210
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.3854051492655189,
|
| 861 |
+
"grad_norm": 0.23081430880637033,
|
| 862 |
+
"learning_rate": 7.700568540745421e-06,
|
| 863 |
+
"loss": 0.2179,
|
| 864 |
+
"step": 1220
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.3885642078660559,
|
| 868 |
+
"grad_norm": 0.14668683659878062,
|
| 869 |
+
"learning_rate": 7.763739734680986e-06,
|
| 870 |
+
"loss": 0.218,
|
| 871 |
+
"step": 1230
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.39172326646659295,
|
| 875 |
+
"grad_norm": 0.17314703270798587,
|
| 876 |
+
"learning_rate": 7.82691092861655e-06,
|
| 877 |
+
"loss": 0.2172,
|
| 878 |
+
"step": 1240
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.39488232506713,
|
| 882 |
+
"grad_norm": 0.1587830451358659,
|
| 883 |
+
"learning_rate": 7.890082122552117e-06,
|
| 884 |
+
"loss": 0.2183,
|
| 885 |
+
"step": 1250
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.39804138366766706,
|
| 889 |
+
"grad_norm": 0.1581230238900689,
|
| 890 |
+
"learning_rate": 7.953253316487683e-06,
|
| 891 |
+
"loss": 0.2157,
|
| 892 |
+
"step": 1260
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.40120044226820406,
|
| 896 |
+
"grad_norm": 0.15808321097279437,
|
| 897 |
+
"learning_rate": 8.016424510423247e-06,
|
| 898 |
+
"loss": 0.2152,
|
| 899 |
+
"step": 1270
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.4043595008687411,
|
| 903 |
+
"grad_norm": 0.17727435096583632,
|
| 904 |
+
"learning_rate": 8.079595704358814e-06,
|
| 905 |
+
"loss": 0.2169,
|
| 906 |
+
"step": 1280
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.4075185594692782,
|
| 910 |
+
"grad_norm": 0.16825167940141256,
|
| 911 |
+
"learning_rate": 8.142766898294378e-06,
|
| 912 |
+
"loss": 0.2143,
|
| 913 |
+
"step": 1290
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.4106776180698152,
|
| 917 |
+
"grad_norm": 0.1623055799684783,
|
| 918 |
+
"learning_rate": 8.205938092229944e-06,
|
| 919 |
+
"loss": 0.214,
|
| 920 |
+
"step": 1300
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.41383667667035223,
|
| 924 |
+
"grad_norm": 0.16866092597564897,
|
| 925 |
+
"learning_rate": 8.269109286165509e-06,
|
| 926 |
+
"loss": 0.2189,
|
| 927 |
+
"step": 1310
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.4169957352708893,
|
| 931 |
+
"grad_norm": 0.15469945071292018,
|
| 932 |
+
"learning_rate": 8.332280480101075e-06,
|
| 933 |
+
"loss": 0.2147,
|
| 934 |
+
"step": 1320
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.4201547938714263,
|
| 938 |
+
"grad_norm": 0.15496524048072485,
|
| 939 |
+
"learning_rate": 8.39545167403664e-06,
|
| 940 |
+
"loss": 0.2155,
|
| 941 |
+
"step": 1330
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.42331385247196335,
|
| 945 |
+
"grad_norm": 0.1607478129687131,
|
| 946 |
+
"learning_rate": 8.458622867972206e-06,
|
| 947 |
+
"loss": 0.2142,
|
| 948 |
+
"step": 1340
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.4264729110725004,
|
| 952 |
+
"grad_norm": 0.16297866728767108,
|
| 953 |
+
"learning_rate": 8.521794061907772e-06,
|
| 954 |
+
"loss": 0.2148,
|
| 955 |
+
"step": 1350
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.42963196967303746,
|
| 959 |
+
"grad_norm": 0.1549484893694436,
|
| 960 |
+
"learning_rate": 8.584965255843336e-06,
|
| 961 |
+
"loss": 0.2162,
|
| 962 |
+
"step": 1360
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.43279102827357446,
|
| 966 |
+
"grad_norm": 0.15790917490616427,
|
| 967 |
+
"learning_rate": 8.6481364497789e-06,
|
| 968 |
+
"loss": 0.2142,
|
| 969 |
+
"step": 1370
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.4359500868741115,
|
| 973 |
+
"grad_norm": 0.17471621371832,
|
| 974 |
+
"learning_rate": 8.711307643714467e-06,
|
| 975 |
+
"loss": 0.215,
|
| 976 |
+
"step": 1380
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.4391091454746486,
|
| 980 |
+
"grad_norm": 0.1704061630987402,
|
| 981 |
+
"learning_rate": 8.774478837650032e-06,
|
| 982 |
+
"loss": 0.2145,
|
| 983 |
+
"step": 1390
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.4422682040751856,
|
| 987 |
+
"grad_norm": 0.17423241802858616,
|
| 988 |
+
"learning_rate": 8.837650031585598e-06,
|
| 989 |
+
"loss": 0.2132,
|
| 990 |
+
"step": 1400
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.44542726267572263,
|
| 994 |
+
"grad_norm": 0.16758619433784536,
|
| 995 |
+
"learning_rate": 8.900821225521164e-06,
|
| 996 |
+
"loss": 0.2138,
|
| 997 |
+
"step": 1410
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.4485863212762597,
|
| 1001 |
+
"grad_norm": 0.17999186900204928,
|
| 1002 |
+
"learning_rate": 8.963992419456728e-06,
|
| 1003 |
+
"loss": 0.2127,
|
| 1004 |
+
"step": 1420
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.4517453798767967,
|
| 1008 |
+
"grad_norm": 0.17065420980005516,
|
| 1009 |
+
"learning_rate": 9.027163613392293e-06,
|
| 1010 |
+
"loss": 0.2138,
|
| 1011 |
+
"step": 1430
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.45490443847733375,
|
| 1015 |
+
"grad_norm": 0.1974703018692422,
|
| 1016 |
+
"learning_rate": 9.090334807327859e-06,
|
| 1017 |
+
"loss": 0.2127,
|
| 1018 |
+
"step": 1440
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.4580634970778708,
|
| 1022 |
+
"grad_norm": 0.20057492546176425,
|
| 1023 |
+
"learning_rate": 9.153506001263425e-06,
|
| 1024 |
+
"loss": 0.2141,
|
| 1025 |
+
"step": 1450
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.4612225556784078,
|
| 1029 |
+
"grad_norm": 0.17543621309019505,
|
| 1030 |
+
"learning_rate": 9.21667719519899e-06,
|
| 1031 |
+
"loss": 0.2109,
|
| 1032 |
+
"step": 1460
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.46438161427894487,
|
| 1036 |
+
"grad_norm": 0.1693436152342155,
|
| 1037 |
+
"learning_rate": 9.279848389134556e-06,
|
| 1038 |
+
"loss": 0.2138,
|
| 1039 |
+
"step": 1470
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.4675406728794819,
|
| 1043 |
+
"grad_norm": 0.18371499893258605,
|
| 1044 |
+
"learning_rate": 9.34301958307012e-06,
|
| 1045 |
+
"loss": 0.2121,
|
| 1046 |
+
"step": 1480
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.470699731480019,
|
| 1050 |
+
"grad_norm": 0.18302132069209362,
|
| 1051 |
+
"learning_rate": 9.406190777005687e-06,
|
| 1052 |
+
"loss": 0.2125,
|
| 1053 |
+
"step": 1490
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.473858790080556,
|
| 1057 |
+
"grad_norm": 0.16878973943654269,
|
| 1058 |
+
"learning_rate": 9.469361970941253e-06,
|
| 1059 |
+
"loss": 0.2096,
|
| 1060 |
+
"step": 1500
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.47701784868109304,
|
| 1064 |
+
"grad_norm": 0.15672142571721928,
|
| 1065 |
+
"learning_rate": 9.532533164876817e-06,
|
| 1066 |
+
"loss": 0.2157,
|
| 1067 |
+
"step": 1510
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.4801769072816301,
|
| 1071 |
+
"grad_norm": 0.17793569853299288,
|
| 1072 |
+
"learning_rate": 9.595704358812382e-06,
|
| 1073 |
+
"loss": 0.2116,
|
| 1074 |
+
"step": 1520
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.4833359658821671,
|
| 1078 |
+
"grad_norm": 0.1711221799529836,
|
| 1079 |
+
"learning_rate": 9.658875552747946e-06,
|
| 1080 |
+
"loss": 0.2086,
|
| 1081 |
+
"step": 1530
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.48649502448270415,
|
| 1085 |
+
"grad_norm": 0.15221905413795137,
|
| 1086 |
+
"learning_rate": 9.722046746683513e-06,
|
| 1087 |
+
"loss": 0.2079,
|
| 1088 |
+
"step": 1540
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.4896540830832412,
|
| 1092 |
+
"grad_norm": 0.1706269772815951,
|
| 1093 |
+
"learning_rate": 9.785217940619079e-06,
|
| 1094 |
+
"loss": 0.2124,
|
| 1095 |
+
"step": 1550
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.4928131416837782,
|
| 1099 |
+
"grad_norm": 0.17041271545684786,
|
| 1100 |
+
"learning_rate": 9.848389134554643e-06,
|
| 1101 |
+
"loss": 0.2105,
|
| 1102 |
+
"step": 1560
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.49597220028431527,
|
| 1106 |
+
"grad_norm": 0.1707130122866249,
|
| 1107 |
+
"learning_rate": 9.91156032849021e-06,
|
| 1108 |
+
"loss": 0.2094,
|
| 1109 |
+
"step": 1570
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.4991312588848523,
|
| 1113 |
+
"grad_norm": 0.1533585694871482,
|
| 1114 |
+
"learning_rate": 9.974731522425774e-06,
|
| 1115 |
+
"loss": 0.2125,
|
| 1116 |
+
"step": 1580
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.5022903174853893,
|
| 1120 |
+
"grad_norm": 0.1445021677961463,
|
| 1121 |
+
"learning_rate": 9.99999562381833e-06,
|
| 1122 |
+
"loss": 0.2104,
|
| 1123 |
+
"step": 1590
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.5054493760859264,
|
| 1127 |
+
"grad_norm": 0.14451068806922954,
|
| 1128 |
+
"learning_rate": 9.999968880513634e-06,
|
| 1129 |
+
"loss": 0.2115,
|
| 1130 |
+
"step": 1600
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.5086084346864634,
|
| 1134 |
+
"grad_norm": 0.1711007683006565,
|
| 1135 |
+
"learning_rate": 9.99991782524616e-06,
|
| 1136 |
+
"loss": 0.2119,
|
| 1137 |
+
"step": 1610
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.5117674932870004,
|
| 1141 |
+
"grad_norm": 0.14862996999525604,
|
| 1142 |
+
"learning_rate": 9.999842458264166e-06,
|
| 1143 |
+
"loss": 0.2091,
|
| 1144 |
+
"step": 1620
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.5149265518875376,
|
| 1148 |
+
"grad_norm": 0.16833296434447828,
|
| 1149 |
+
"learning_rate": 9.999742779934113e-06,
|
| 1150 |
+
"loss": 0.2089,
|
| 1151 |
+
"step": 1630
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.5180856104880746,
|
| 1155 |
+
"grad_norm": 0.16624207360408486,
|
| 1156 |
+
"learning_rate": 9.999618790740677e-06,
|
| 1157 |
+
"loss": 0.2076,
|
| 1158 |
+
"step": 1640
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.5212446690886116,
|
| 1162 |
+
"grad_norm": 0.18734837267014448,
|
| 1163 |
+
"learning_rate": 9.99947049128675e-06,
|
| 1164 |
+
"loss": 0.2093,
|
| 1165 |
+
"step": 1650
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.5244037276891487,
|
| 1169 |
+
"grad_norm": 0.17593769602265188,
|
| 1170 |
+
"learning_rate": 9.999297882293429e-06,
|
| 1171 |
+
"loss": 0.2104,
|
| 1172 |
+
"step": 1660
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.5275627862896857,
|
| 1176 |
+
"grad_norm": 0.1534253401122401,
|
| 1177 |
+
"learning_rate": 9.999100964600006e-06,
|
| 1178 |
+
"loss": 0.2094,
|
| 1179 |
+
"step": 1670
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.5307218448902227,
|
| 1183 |
+
"grad_norm": 0.1488174937468484,
|
| 1184 |
+
"learning_rate": 9.998879739163982e-06,
|
| 1185 |
+
"loss": 0.2087,
|
| 1186 |
+
"step": 1680
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.5338809034907598,
|
| 1190 |
+
"grad_norm": 0.13829240161020598,
|
| 1191 |
+
"learning_rate": 9.998634207061047e-06,
|
| 1192 |
+
"loss": 0.2083,
|
| 1193 |
+
"step": 1690
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.5370399620912968,
|
| 1197 |
+
"grad_norm": 0.15837901482606578,
|
| 1198 |
+
"learning_rate": 9.998364369485083e-06,
|
| 1199 |
+
"loss": 0.2065,
|
| 1200 |
+
"step": 1700
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.5401990206918338,
|
| 1204 |
+
"grad_norm": 0.14373686188939075,
|
| 1205 |
+
"learning_rate": 9.998070227748153e-06,
|
| 1206 |
+
"loss": 0.2077,
|
| 1207 |
+
"step": 1710
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.5433580792923709,
|
| 1211 |
+
"grad_norm": 0.13856399191761934,
|
| 1212 |
+
"learning_rate": 9.9977517832805e-06,
|
| 1213 |
+
"loss": 0.2074,
|
| 1214 |
+
"step": 1720
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.5465171378929079,
|
| 1218 |
+
"grad_norm": 0.16428912206666343,
|
| 1219 |
+
"learning_rate": 9.997409037630533e-06,
|
| 1220 |
+
"loss": 0.2072,
|
| 1221 |
+
"step": 1730
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.5496761964934449,
|
| 1225 |
+
"grad_norm": 0.14598794955578479,
|
| 1226 |
+
"learning_rate": 9.997041992464828e-06,
|
| 1227 |
+
"loss": 0.207,
|
| 1228 |
+
"step": 1740
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.552835255093982,
|
| 1232 |
+
"grad_norm": 0.1544681862373563,
|
| 1233 |
+
"learning_rate": 9.996650649568116e-06,
|
| 1234 |
+
"loss": 0.2067,
|
| 1235 |
+
"step": 1750
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.555994313694519,
|
| 1239 |
+
"grad_norm": 0.16063147300592975,
|
| 1240 |
+
"learning_rate": 9.996235010843269e-06,
|
| 1241 |
+
"loss": 0.2091,
|
| 1242 |
+
"step": 1760
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.5591533722950561,
|
| 1246 |
+
"grad_norm": 0.16009334025881428,
|
| 1247 |
+
"learning_rate": 9.9957950783113e-06,
|
| 1248 |
+
"loss": 0.2068,
|
| 1249 |
+
"step": 1770
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.5623124308955931,
|
| 1253 |
+
"grad_norm": 0.1473832672273453,
|
| 1254 |
+
"learning_rate": 9.995330854111342e-06,
|
| 1255 |
+
"loss": 0.2072,
|
| 1256 |
+
"step": 1780
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.5654714894961301,
|
| 1260 |
+
"grad_norm": 0.1758179524267874,
|
| 1261 |
+
"learning_rate": 9.994842340500654e-06,
|
| 1262 |
+
"loss": 0.2051,
|
| 1263 |
+
"step": 1790
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.5686305480966672,
|
| 1267 |
+
"grad_norm": 0.160062543193855,
|
| 1268 |
+
"learning_rate": 9.994329539854597e-06,
|
| 1269 |
+
"loss": 0.2023,
|
| 1270 |
+
"step": 1800
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.5717896066972042,
|
| 1274 |
+
"grad_norm": 0.14481223083195094,
|
| 1275 |
+
"learning_rate": 9.993792454666622e-06,
|
| 1276 |
+
"loss": 0.2049,
|
| 1277 |
+
"step": 1810
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.5749486652977412,
|
| 1281 |
+
"grad_norm": 0.17516638701269122,
|
| 1282 |
+
"learning_rate": 9.993231087548263e-06,
|
| 1283 |
+
"loss": 0.2056,
|
| 1284 |
+
"step": 1820
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.5781077238982784,
|
| 1288 |
+
"grad_norm": 0.15577929587795278,
|
| 1289 |
+
"learning_rate": 9.992645441229128e-06,
|
| 1290 |
+
"loss": 0.2053,
|
| 1291 |
+
"step": 1830
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.5812667824988154,
|
| 1295 |
+
"grad_norm": 0.16063695498724154,
|
| 1296 |
+
"learning_rate": 9.992035518556873e-06,
|
| 1297 |
+
"loss": 0.2032,
|
| 1298 |
+
"step": 1840
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.5844258410993524,
|
| 1302 |
+
"grad_norm": 0.13465469823943357,
|
| 1303 |
+
"learning_rate": 9.991401322497202e-06,
|
| 1304 |
+
"loss": 0.2078,
|
| 1305 |
+
"step": 1850
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.5875848996998895,
|
| 1309 |
+
"grad_norm": 0.14458781318924407,
|
| 1310 |
+
"learning_rate": 9.990742856133844e-06,
|
| 1311 |
+
"loss": 0.2075,
|
| 1312 |
+
"step": 1860
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.5907439583004265,
|
| 1316 |
+
"grad_norm": 0.15458252884662305,
|
| 1317 |
+
"learning_rate": 9.990060122668543e-06,
|
| 1318 |
+
"loss": 0.2058,
|
| 1319 |
+
"step": 1870
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.5939030169009635,
|
| 1323 |
+
"grad_norm": 0.13378310324370862,
|
| 1324 |
+
"learning_rate": 9.989353125421034e-06,
|
| 1325 |
+
"loss": 0.2077,
|
| 1326 |
+
"step": 1880
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.5970620755015006,
|
| 1330 |
+
"grad_norm": 0.14092827320728965,
|
| 1331 |
+
"learning_rate": 9.98862186782904e-06,
|
| 1332 |
+
"loss": 0.205,
|
| 1333 |
+
"step": 1890
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.6002211341020376,
|
| 1337 |
+
"grad_norm": 0.14528693075899177,
|
| 1338 |
+
"learning_rate": 9.987866353448241e-06,
|
| 1339 |
+
"loss": 0.2056,
|
| 1340 |
+
"step": 1900
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.6033801927025746,
|
| 1344 |
+
"grad_norm": 0.16835849378700468,
|
| 1345 |
+
"learning_rate": 9.987086585952271e-06,
|
| 1346 |
+
"loss": 0.202,
|
| 1347 |
+
"step": 1910
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.6065392513031117,
|
| 1351 |
+
"grad_norm": 0.14702108474072842,
|
| 1352 |
+
"learning_rate": 9.986282569132688e-06,
|
| 1353 |
+
"loss": 0.2046,
|
| 1354 |
+
"step": 1920
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.6096983099036487,
|
| 1358 |
+
"grad_norm": 0.15598954366138304,
|
| 1359 |
+
"learning_rate": 9.98545430689896e-06,
|
| 1360 |
+
"loss": 0.2037,
|
| 1361 |
+
"step": 1930
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.6128573685041857,
|
| 1365 |
+
"grad_norm": 0.15363339652231678,
|
| 1366 |
+
"learning_rate": 9.984601803278451e-06,
|
| 1367 |
+
"loss": 0.2065,
|
| 1368 |
+
"step": 1940
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.6160164271047228,
|
| 1372 |
+
"grad_norm": 0.15079303342445485,
|
| 1373 |
+
"learning_rate": 9.983725062416392e-06,
|
| 1374 |
+
"loss": 0.2046,
|
| 1375 |
+
"step": 1950
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.6191754857052598,
|
| 1379 |
+
"grad_norm": 0.13780206734265157,
|
| 1380 |
+
"learning_rate": 9.98282408857587e-06,
|
| 1381 |
+
"loss": 0.2054,
|
| 1382 |
+
"step": 1960
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.6223345443057968,
|
| 1386 |
+
"grad_norm": 0.1355920930705493,
|
| 1387 |
+
"learning_rate": 9.981898886137795e-06,
|
| 1388 |
+
"loss": 0.2039,
|
| 1389 |
+
"step": 1970
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.6254936029063339,
|
| 1393 |
+
"grad_norm": 0.14054778625440462,
|
| 1394 |
+
"learning_rate": 9.980949459600899e-06,
|
| 1395 |
+
"loss": 0.2045,
|
| 1396 |
+
"step": 1980
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.6286526615068709,
|
| 1400 |
+
"grad_norm": 0.16259862482128506,
|
| 1401 |
+
"learning_rate": 9.979975813581694e-06,
|
| 1402 |
+
"loss": 0.2033,
|
| 1403 |
+
"step": 1990
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.6318117201074079,
|
| 1407 |
+
"grad_norm": 0.16320641790440754,
|
| 1408 |
+
"learning_rate": 9.978977952814456e-06,
|
| 1409 |
+
"loss": 0.2053,
|
| 1410 |
+
"step": 2000
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.634970778707945,
|
| 1414 |
+
"grad_norm": 0.14504338218528204,
|
| 1415 |
+
"learning_rate": 9.97795588215121e-06,
|
| 1416 |
+
"loss": 0.2041,
|
| 1417 |
+
"step": 2010
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.638129837308482,
|
| 1421 |
+
"grad_norm": 0.14088062087038478,
|
| 1422 |
+
"learning_rate": 9.97690960656169e-06,
|
| 1423 |
+
"loss": 0.2034,
|
| 1424 |
+
"step": 2020
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.6412888959090192,
|
| 1428 |
+
"grad_norm": 0.16368648316215648,
|
| 1429 |
+
"learning_rate": 9.975839131133335e-06,
|
| 1430 |
+
"loss": 0.2004,
|
| 1431 |
+
"step": 2030
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.6444479545095562,
|
| 1435 |
+
"grad_norm": 0.14137074446596326,
|
| 1436 |
+
"learning_rate": 9.974744461071246e-06,
|
| 1437 |
+
"loss": 0.2039,
|
| 1438 |
+
"step": 2040
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.6476070131100932,
|
| 1442 |
+
"grad_norm": 0.16743385196077595,
|
| 1443 |
+
"learning_rate": 9.973625601698176e-06,
|
| 1444 |
+
"loss": 0.2024,
|
| 1445 |
+
"step": 2050
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.6507660717106303,
|
| 1449 |
+
"grad_norm": 0.1420212347341941,
|
| 1450 |
+
"learning_rate": 9.972482558454488e-06,
|
| 1451 |
+
"loss": 0.2006,
|
| 1452 |
+
"step": 2060
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.6539251303111673,
|
| 1456 |
+
"grad_norm": 0.1541147190019739,
|
| 1457 |
+
"learning_rate": 9.971315336898144e-06,
|
| 1458 |
+
"loss": 0.2031,
|
| 1459 |
+
"step": 2070
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.6570841889117043,
|
| 1463 |
+
"grad_norm": 0.14954970584415023,
|
| 1464 |
+
"learning_rate": 9.970123942704667e-06,
|
| 1465 |
+
"loss": 0.2022,
|
| 1466 |
+
"step": 2080
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.6602432475122414,
|
| 1470 |
+
"grad_norm": 0.13835942774621643,
|
| 1471 |
+
"learning_rate": 9.968908381667122e-06,
|
| 1472 |
+
"loss": 0.205,
|
| 1473 |
+
"step": 2090
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.6634023061127784,
|
| 1477 |
+
"grad_norm": 0.1444063211993615,
|
| 1478 |
+
"learning_rate": 9.967668659696077e-06,
|
| 1479 |
+
"loss": 0.2003,
|
| 1480 |
+
"step": 2100
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.6665613647133154,
|
| 1484 |
+
"grad_norm": 0.15181588903023388,
|
| 1485 |
+
"learning_rate": 9.966404782819587e-06,
|
| 1486 |
+
"loss": 0.2041,
|
| 1487 |
+
"step": 2110
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.6697204233138525,
|
| 1491 |
+
"grad_norm": 0.14453828048169265,
|
| 1492 |
+
"learning_rate": 9.965116757183156e-06,
|
| 1493 |
+
"loss": 0.2008,
|
| 1494 |
+
"step": 2120
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.6728794819143895,
|
| 1498 |
+
"grad_norm": 0.16433983585515474,
|
| 1499 |
+
"learning_rate": 9.963804589049709e-06,
|
| 1500 |
+
"loss": 0.2045,
|
| 1501 |
+
"step": 2130
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.6760385405149265,
|
| 1505 |
+
"grad_norm": 0.14280102041208004,
|
| 1506 |
+
"learning_rate": 9.962468284799559e-06,
|
| 1507 |
+
"loss": 0.2021,
|
| 1508 |
+
"step": 2140
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.6791975991154636,
|
| 1512 |
+
"grad_norm": 0.14204139100462726,
|
| 1513 |
+
"learning_rate": 9.961107850930386e-06,
|
| 1514 |
+
"loss": 0.201,
|
| 1515 |
+
"step": 2150
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.6823566577160006,
|
| 1519 |
+
"grad_norm": 0.1324076473779632,
|
| 1520 |
+
"learning_rate": 9.959723294057195e-06,
|
| 1521 |
+
"loss": 0.1991,
|
| 1522 |
+
"step": 2160
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.6855157163165376,
|
| 1526 |
+
"grad_norm": 0.14295162932415698,
|
| 1527 |
+
"learning_rate": 9.958314620912283e-06,
|
| 1528 |
+
"loss": 0.2025,
|
| 1529 |
+
"step": 2170
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.6886747749170747,
|
| 1533 |
+
"grad_norm": 0.15726554545849142,
|
| 1534 |
+
"learning_rate": 9.956881838345221e-06,
|
| 1535 |
+
"loss": 0.2033,
|
| 1536 |
+
"step": 2180
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.6918338335176117,
|
| 1540 |
+
"grad_norm": 0.16250545787100992,
|
| 1541 |
+
"learning_rate": 9.955424953322797e-06,
|
| 1542 |
+
"loss": 0.2015,
|
| 1543 |
+
"step": 2190
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.6949928921181487,
|
| 1547 |
+
"grad_norm": 0.1614266022365173,
|
| 1548 |
+
"learning_rate": 9.953943972929003e-06,
|
| 1549 |
+
"loss": 0.1996,
|
| 1550 |
+
"step": 2200
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.6981519507186859,
|
| 1554 |
+
"grad_norm": 0.15900062576977386,
|
| 1555 |
+
"learning_rate": 9.952438904364996e-06,
|
| 1556 |
+
"loss": 0.2026,
|
| 1557 |
+
"step": 2210
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.7013110093192229,
|
| 1561 |
+
"grad_norm": 0.13873539419869083,
|
| 1562 |
+
"learning_rate": 9.950909754949052e-06,
|
| 1563 |
+
"loss": 0.2035,
|
| 1564 |
+
"step": 2220
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.7044700679197599,
|
| 1568 |
+
"grad_norm": 0.16329226810226954,
|
| 1569 |
+
"learning_rate": 9.949356532116546e-06,
|
| 1570 |
+
"loss": 0.2017,
|
| 1571 |
+
"step": 2230
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.707629126520297,
|
| 1575 |
+
"grad_norm": 0.130433030569765,
|
| 1576 |
+
"learning_rate": 9.947779243419899e-06,
|
| 1577 |
+
"loss": 0.2017,
|
| 1578 |
+
"step": 2240
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.710788185120834,
|
| 1582 |
+
"grad_norm": 0.13992897215148528,
|
| 1583 |
+
"learning_rate": 9.946177896528557e-06,
|
| 1584 |
+
"loss": 0.2001,
|
| 1585 |
+
"step": 2250
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.7139472437213711,
|
| 1589 |
+
"grad_norm": 0.14070910045992718,
|
| 1590 |
+
"learning_rate": 9.944552499228947e-06,
|
| 1591 |
+
"loss": 0.2007,
|
| 1592 |
+
"step": 2260
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.7171063023219081,
|
| 1596 |
+
"grad_norm": 0.1469150772379642,
|
| 1597 |
+
"learning_rate": 9.942903059424441e-06,
|
| 1598 |
+
"loss": 0.2006,
|
| 1599 |
+
"step": 2270
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.7202653609224451,
|
| 1603 |
+
"grad_norm": 0.18224682305919618,
|
| 1604 |
+
"learning_rate": 9.941229585135307e-06,
|
| 1605 |
+
"loss": 0.2028,
|
| 1606 |
+
"step": 2280
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.7234244195229822,
|
| 1610 |
+
"grad_norm": 0.14288906489417755,
|
| 1611 |
+
"learning_rate": 9.939532084498685e-06,
|
| 1612 |
+
"loss": 0.1987,
|
| 1613 |
+
"step": 2290
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.7265834781235192,
|
| 1617 |
+
"grad_norm": 0.13437271496120856,
|
| 1618 |
+
"learning_rate": 9.937810565768544e-06,
|
| 1619 |
+
"loss": 0.1993,
|
| 1620 |
+
"step": 2300
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.7297425367240562,
|
| 1624 |
+
"grad_norm": 0.1446887097806904,
|
| 1625 |
+
"learning_rate": 9.936065037315636e-06,
|
| 1626 |
+
"loss": 0.2011,
|
| 1627 |
+
"step": 2310
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.7329015953245933,
|
| 1631 |
+
"grad_norm": 0.13251427513003186,
|
| 1632 |
+
"learning_rate": 9.934295507627456e-06,
|
| 1633 |
+
"loss": 0.2022,
|
| 1634 |
+
"step": 2320
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.7360606539251303,
|
| 1638 |
+
"grad_norm": 0.1452288699010562,
|
| 1639 |
+
"learning_rate": 9.932501985308206e-06,
|
| 1640 |
+
"loss": 0.2009,
|
| 1641 |
+
"step": 2330
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.7392197125256673,
|
| 1645 |
+
"grad_norm": 0.14728963865115374,
|
| 1646 |
+
"learning_rate": 9.93068447907875e-06,
|
| 1647 |
+
"loss": 0.1987,
|
| 1648 |
+
"step": 2340
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.7423787711262044,
|
| 1652 |
+
"grad_norm": 0.1517245487863863,
|
| 1653 |
+
"learning_rate": 9.928842997776574e-06,
|
| 1654 |
+
"loss": 0.2013,
|
| 1655 |
+
"step": 2350
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.7455378297267414,
|
| 1659 |
+
"grad_norm": 0.1614866572575232,
|
| 1660 |
+
"learning_rate": 9.926977550355734e-06,
|
| 1661 |
+
"loss": 0.1997,
|
| 1662 |
+
"step": 2360
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.7486968883272784,
|
| 1666 |
+
"grad_norm": 0.14031629423175507,
|
| 1667 |
+
"learning_rate": 9.92508814588683e-06,
|
| 1668 |
+
"loss": 0.199,
|
| 1669 |
+
"step": 2370
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.7518559469278155,
|
| 1673 |
+
"grad_norm": 0.14118485538481557,
|
| 1674 |
+
"learning_rate": 9.92317479355694e-06,
|
| 1675 |
+
"loss": 0.1976,
|
| 1676 |
+
"step": 2380
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.7550150055283525,
|
| 1680 |
+
"grad_norm": 0.13181048592845238,
|
| 1681 |
+
"learning_rate": 9.921237502669595e-06,
|
| 1682 |
+
"loss": 0.198,
|
| 1683 |
+
"step": 2390
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.7581740641288895,
|
| 1687 |
+
"grad_norm": 0.1345265368505879,
|
| 1688 |
+
"learning_rate": 9.919276282644723e-06,
|
| 1689 |
+
"loss": 0.201,
|
| 1690 |
+
"step": 2400
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.7613331227294267,
|
| 1694 |
+
"grad_norm": 0.13720890023292417,
|
| 1695 |
+
"learning_rate": 9.917291143018604e-06,
|
| 1696 |
+
"loss": 0.2009,
|
| 1697 |
+
"step": 2410
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.7644921813299637,
|
| 1701 |
+
"grad_norm": 0.13845111986552353,
|
| 1702 |
+
"learning_rate": 9.915282093443825e-06,
|
| 1703 |
+
"loss": 0.2008,
|
| 1704 |
+
"step": 2420
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.7676512399305007,
|
| 1708 |
+
"grad_norm": 0.14617335075904797,
|
| 1709 |
+
"learning_rate": 9.913249143689234e-06,
|
| 1710 |
+
"loss": 0.1991,
|
| 1711 |
+
"step": 2430
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.7708102985310378,
|
| 1715 |
+
"grad_norm": 0.1320877727948845,
|
| 1716 |
+
"learning_rate": 9.911192303639896e-06,
|
| 1717 |
+
"loss": 0.1999,
|
| 1718 |
+
"step": 2440
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.7739693571315748,
|
| 1722 |
+
"grad_norm": 0.13482883240500468,
|
| 1723 |
+
"learning_rate": 9.909111583297035e-06,
|
| 1724 |
+
"loss": 0.1997,
|
| 1725 |
+
"step": 2450
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.7771284157321118,
|
| 1729 |
+
"grad_norm": 0.14200097798675781,
|
| 1730 |
+
"learning_rate": 9.907006992777991e-06,
|
| 1731 |
+
"loss": 0.2008,
|
| 1732 |
+
"step": 2460
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.7802874743326489,
|
| 1736 |
+
"grad_norm": 0.13733098129824253,
|
| 1737 |
+
"learning_rate": 9.904878542316177e-06,
|
| 1738 |
+
"loss": 0.1988,
|
| 1739 |
+
"step": 2470
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.7834465329331859,
|
| 1743 |
+
"grad_norm": 0.14967333958732693,
|
| 1744 |
+
"learning_rate": 9.902726242261015e-06,
|
| 1745 |
+
"loss": 0.2,
|
| 1746 |
+
"step": 2480
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.786605591533723,
|
| 1750 |
+
"grad_norm": 0.18469961665919096,
|
| 1751 |
+
"learning_rate": 9.9005501030779e-06,
|
| 1752 |
+
"loss": 0.1998,
|
| 1753 |
+
"step": 2490
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.78976465013426,
|
| 1757 |
+
"grad_norm": 0.1291065536177641,
|
| 1758 |
+
"learning_rate": 9.898350135348143e-06,
|
| 1759 |
+
"loss": 0.1994,
|
| 1760 |
+
"step": 2500
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.792923708734797,
|
| 1764 |
+
"grad_norm": 0.1455654343221393,
|
| 1765 |
+
"learning_rate": 9.896126349768913e-06,
|
| 1766 |
+
"loss": 0.1961,
|
| 1767 |
+
"step": 2510
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.7960827673353341,
|
| 1771 |
+
"grad_norm": 0.1305825664747534,
|
| 1772 |
+
"learning_rate": 9.893878757153197e-06,
|
| 1773 |
+
"loss": 0.1997,
|
| 1774 |
+
"step": 2520
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.7992418259358711,
|
| 1778 |
+
"grad_norm": 0.1355469021976556,
|
| 1779 |
+
"learning_rate": 9.891607368429741e-06,
|
| 1780 |
+
"loss": 0.2009,
|
| 1781 |
+
"step": 2530
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.8024008845364081,
|
| 1785 |
+
"grad_norm": 0.1393422807545934,
|
| 1786 |
+
"learning_rate": 9.889312194642999e-06,
|
| 1787 |
+
"loss": 0.1996,
|
| 1788 |
+
"step": 2540
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.8055599431369452,
|
| 1792 |
+
"grad_norm": 0.14137833832556562,
|
| 1793 |
+
"learning_rate": 9.886993246953075e-06,
|
| 1794 |
+
"loss": 0.1984,
|
| 1795 |
+
"step": 2550
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.8087190017374822,
|
| 1799 |
+
"grad_norm": 0.1288518244334966,
|
| 1800 |
+
"learning_rate": 9.884650536635674e-06,
|
| 1801 |
+
"loss": 0.1998,
|
| 1802 |
+
"step": 2560
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.8118780603380192,
|
| 1806 |
+
"grad_norm": 0.12540981604153706,
|
| 1807 |
+
"learning_rate": 9.882284075082042e-06,
|
| 1808 |
+
"loss": 0.1953,
|
| 1809 |
+
"step": 2570
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.8150371189385563,
|
| 1813 |
+
"grad_norm": 0.1298044947287737,
|
| 1814 |
+
"learning_rate": 9.879893873798918e-06,
|
| 1815 |
+
"loss": 0.1998,
|
| 1816 |
+
"step": 2580
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.8181961775390934,
|
| 1820 |
+
"grad_norm": 0.13593942142698026,
|
| 1821 |
+
"learning_rate": 9.877479944408469e-06,
|
| 1822 |
+
"loss": 0.1994,
|
| 1823 |
+
"step": 2590
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.8213552361396304,
|
| 1827 |
+
"grad_norm": 0.14577596422732375,
|
| 1828 |
+
"learning_rate": 9.875042298648241e-06,
|
| 1829 |
+
"loss": 0.1968,
|
| 1830 |
+
"step": 2600
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.8245142947401675,
|
| 1834 |
+
"grad_norm": 0.13651649878117303,
|
| 1835 |
+
"learning_rate": 9.872580948371101e-06,
|
| 1836 |
+
"loss": 0.1959,
|
| 1837 |
+
"step": 2610
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.8276733533407045,
|
| 1841 |
+
"grad_norm": 0.13458568002303536,
|
| 1842 |
+
"learning_rate": 9.870095905545172e-06,
|
| 1843 |
+
"loss": 0.1975,
|
| 1844 |
+
"step": 2620
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.8308324119412415,
|
| 1848 |
+
"grad_norm": 0.13467497395688513,
|
| 1849 |
+
"learning_rate": 9.867587182253783e-06,
|
| 1850 |
+
"loss": 0.198,
|
| 1851 |
+
"step": 2630
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.8339914705417786,
|
| 1855 |
+
"grad_norm": 0.1334106181890542,
|
| 1856 |
+
"learning_rate": 9.86505479069541e-06,
|
| 1857 |
+
"loss": 0.1975,
|
| 1858 |
+
"step": 2640
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.8371505291423156,
|
| 1862 |
+
"grad_norm": 0.14726119516550862,
|
| 1863 |
+
"learning_rate": 9.862498743183606e-06,
|
| 1864 |
+
"loss": 0.1962,
|
| 1865 |
+
"step": 2650
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.8403095877428526,
|
| 1869 |
+
"grad_norm": 0.13818332053028007,
|
| 1870 |
+
"learning_rate": 9.85991905214696e-06,
|
| 1871 |
+
"loss": 0.1998,
|
| 1872 |
+
"step": 2660
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.8434686463433897,
|
| 1876 |
+
"grad_norm": 0.14412901343016873,
|
| 1877 |
+
"learning_rate": 9.85731573012902e-06,
|
| 1878 |
+
"loss": 0.2,
|
| 1879 |
+
"step": 2670
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.8466277049439267,
|
| 1883 |
+
"grad_norm": 0.1255413662933083,
|
| 1884 |
+
"learning_rate": 9.854688789788236e-06,
|
| 1885 |
+
"loss": 0.198,
|
| 1886 |
+
"step": 2680
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.8497867635444637,
|
| 1890 |
+
"grad_norm": 0.13187344960522424,
|
| 1891 |
+
"learning_rate": 9.852038243897903e-06,
|
| 1892 |
+
"loss": 0.1972,
|
| 1893 |
+
"step": 2690
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.8529458221450008,
|
| 1897 |
+
"grad_norm": 0.13247624619465903,
|
| 1898 |
+
"learning_rate": 9.849364105346098e-06,
|
| 1899 |
+
"loss": 0.1982,
|
| 1900 |
+
"step": 2700
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.8561048807455378,
|
| 1904 |
+
"grad_norm": 0.12352050553226067,
|
| 1905 |
+
"learning_rate": 9.846666387135613e-06,
|
| 1906 |
+
"loss": 0.1954,
|
| 1907 |
+
"step": 2710
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.8592639393460749,
|
| 1911 |
+
"grad_norm": 0.13384183862518867,
|
| 1912 |
+
"learning_rate": 9.843945102383892e-06,
|
| 1913 |
+
"loss": 0.197,
|
| 1914 |
+
"step": 2720
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.8624229979466119,
|
| 1918 |
+
"grad_norm": 0.12329786824129346,
|
| 1919 |
+
"learning_rate": 9.841200264322974e-06,
|
| 1920 |
+
"loss": 0.1977,
|
| 1921 |
+
"step": 2730
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.8655820565471489,
|
| 1925 |
+
"grad_norm": 0.13477039032719176,
|
| 1926 |
+
"learning_rate": 9.838431886299421e-06,
|
| 1927 |
+
"loss": 0.1961,
|
| 1928 |
+
"step": 2740
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.868741115147686,
|
| 1932 |
+
"grad_norm": 0.13828179616792935,
|
| 1933 |
+
"learning_rate": 9.83563998177426e-06,
|
| 1934 |
+
"loss": 0.1967,
|
| 1935 |
+
"step": 2750
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.871900173748223,
|
| 1939 |
+
"grad_norm": 0.14564045162827766,
|
| 1940 |
+
"learning_rate": 9.83282456432291e-06,
|
| 1941 |
+
"loss": 0.1965,
|
| 1942 |
+
"step": 2760
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.87505923234876,
|
| 1946 |
+
"grad_norm": 0.13685777011127429,
|
| 1947 |
+
"learning_rate": 9.829985647635118e-06,
|
| 1948 |
+
"loss": 0.1981,
|
| 1949 |
+
"step": 2770
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.8782182909492972,
|
| 1953 |
+
"grad_norm": 0.13617569439938054,
|
| 1954 |
+
"learning_rate": 9.827123245514901e-06,
|
| 1955 |
+
"loss": 0.1951,
|
| 1956 |
+
"step": 2780
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.8813773495498342,
|
| 1960 |
+
"grad_norm": 0.12868163128280088,
|
| 1961 |
+
"learning_rate": 9.824237371880469e-06,
|
| 1962 |
+
"loss": 0.195,
|
| 1963 |
+
"step": 2790
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.8845364081503712,
|
| 1967 |
+
"grad_norm": 0.13965590647075304,
|
| 1968 |
+
"learning_rate": 9.821328040764157e-06,
|
| 1969 |
+
"loss": 0.1984,
|
| 1970 |
+
"step": 2800
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.8876954667509083,
|
| 1974 |
+
"grad_norm": 0.1191526599411457,
|
| 1975 |
+
"learning_rate": 9.818395266312363e-06,
|
| 1976 |
+
"loss": 0.1925,
|
| 1977 |
+
"step": 2810
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.8908545253514453,
|
| 1981 |
+
"grad_norm": 0.1209195098683138,
|
| 1982 |
+
"learning_rate": 9.81543906278548e-06,
|
| 1983 |
+
"loss": 0.1995,
|
| 1984 |
+
"step": 2820
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.8940135839519823,
|
| 1988 |
+
"grad_norm": 0.12466523038010362,
|
| 1989 |
+
"learning_rate": 9.812459444557815e-06,
|
| 1990 |
+
"loss": 0.1937,
|
| 1991 |
+
"step": 2830
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.8971726425525194,
|
| 1995 |
+
"grad_norm": 0.12952393163312614,
|
| 1996 |
+
"learning_rate": 9.809456426117533e-06,
|
| 1997 |
+
"loss": 0.1932,
|
| 1998 |
+
"step": 2840
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.9003317011530564,
|
| 2002 |
+
"grad_norm": 0.13392155972728179,
|
| 2003 |
+
"learning_rate": 9.806430022066582e-06,
|
| 2004 |
+
"loss": 0.1978,
|
| 2005 |
+
"step": 2850
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.9034907597535934,
|
| 2009 |
+
"grad_norm": 0.13186718584966667,
|
| 2010 |
+
"learning_rate": 9.803380247120616e-06,
|
| 2011 |
+
"loss": 0.1953,
|
| 2012 |
+
"step": 2860
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.9066498183541305,
|
| 2016 |
+
"grad_norm": 0.1283857878998356,
|
| 2017 |
+
"learning_rate": 9.800307116108931e-06,
|
| 2018 |
+
"loss": 0.1962,
|
| 2019 |
+
"step": 2870
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.9098088769546675,
|
| 2023 |
+
"grad_norm": 0.12302487764368193,
|
| 2024 |
+
"learning_rate": 9.797210643974388e-06,
|
| 2025 |
+
"loss": 0.1954,
|
| 2026 |
+
"step": 2880
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.9129679355552045,
|
| 2030 |
+
"grad_norm": 0.1279449953769118,
|
| 2031 |
+
"learning_rate": 9.794090845773346e-06,
|
| 2032 |
+
"loss": 0.1936,
|
| 2033 |
+
"step": 2890
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.9161269941557416,
|
| 2037 |
+
"grad_norm": 0.13723185562370793,
|
| 2038 |
+
"learning_rate": 9.79094773667558e-06,
|
| 2039 |
+
"loss": 0.1948,
|
| 2040 |
+
"step": 2900
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.9192860527562786,
|
| 2044 |
+
"grad_norm": 0.1382694059956154,
|
| 2045 |
+
"learning_rate": 9.787781331964217e-06,
|
| 2046 |
+
"loss": 0.1961,
|
| 2047 |
+
"step": 2910
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.9224451113568156,
|
| 2051 |
+
"grad_norm": 0.13522487929855218,
|
| 2052 |
+
"learning_rate": 9.784591647035654e-06,
|
| 2053 |
+
"loss": 0.1944,
|
| 2054 |
+
"step": 2920
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.9256041699573527,
|
| 2058 |
+
"grad_norm": 0.13619232160862846,
|
| 2059 |
+
"learning_rate": 9.781378697399492e-06,
|
| 2060 |
+
"loss": 0.1939,
|
| 2061 |
+
"step": 2930
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.9287632285578897,
|
| 2065 |
+
"grad_norm": 0.13966605421891545,
|
| 2066 |
+
"learning_rate": 9.778142498678447e-06,
|
| 2067 |
+
"loss": 0.1936,
|
| 2068 |
+
"step": 2940
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.9319222871584268,
|
| 2072 |
+
"grad_norm": 0.13610146242659704,
|
| 2073 |
+
"learning_rate": 9.774883066608288e-06,
|
| 2074 |
+
"loss": 0.1955,
|
| 2075 |
+
"step": 2950
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.9350813457589638,
|
| 2079 |
+
"grad_norm": 0.1272898066516385,
|
| 2080 |
+
"learning_rate": 9.771600417037747e-06,
|
| 2081 |
+
"loss": 0.1951,
|
| 2082 |
+
"step": 2960
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.9382404043595008,
|
| 2086 |
+
"grad_norm": 0.12577223515891656,
|
| 2087 |
+
"learning_rate": 9.76829456592846e-06,
|
| 2088 |
+
"loss": 0.1941,
|
| 2089 |
+
"step": 2970
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.941399462960038,
|
| 2093 |
+
"grad_norm": 0.13229230817335338,
|
| 2094 |
+
"learning_rate": 9.76496552935487e-06,
|
| 2095 |
+
"loss": 0.1948,
|
| 2096 |
+
"step": 2980
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.944558521560575,
|
| 2100 |
+
"grad_norm": 0.13057771902599097,
|
| 2101 |
+
"learning_rate": 9.76161332350416e-06,
|
| 2102 |
+
"loss": 0.1945,
|
| 2103 |
+
"step": 2990
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.947717580161112,
|
| 2107 |
+
"grad_norm": 0.1375087406497119,
|
| 2108 |
+
"learning_rate": 9.758237964676175e-06,
|
| 2109 |
+
"loss": 0.1946,
|
| 2110 |
+
"step": 3000
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.9508766387616491,
|
| 2114 |
+
"grad_norm": 0.13144411031384784,
|
| 2115 |
+
"learning_rate": 9.754839469283333e-06,
|
| 2116 |
+
"loss": 0.1916,
|
| 2117 |
+
"step": 3010
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.9540356973621861,
|
| 2121 |
+
"grad_norm": 0.1307858984474674,
|
| 2122 |
+
"learning_rate": 9.751417853850557e-06,
|
| 2123 |
+
"loss": 0.1961,
|
| 2124 |
+
"step": 3020
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.9571947559627231,
|
| 2128 |
+
"grad_norm": 0.12400375737914372,
|
| 2129 |
+
"learning_rate": 9.747973135015187e-06,
|
| 2130 |
+
"loss": 0.1948,
|
| 2131 |
+
"step": 3030
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.9603538145632602,
|
| 2135 |
+
"grad_norm": 0.14800804219149807,
|
| 2136 |
+
"learning_rate": 9.744505329526906e-06,
|
| 2137 |
+
"loss": 0.1951,
|
| 2138 |
+
"step": 3040
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.9635128731637972,
|
| 2142 |
+
"grad_norm": 0.13528680108076863,
|
| 2143 |
+
"learning_rate": 9.741014454247648e-06,
|
| 2144 |
+
"loss": 0.1946,
|
| 2145 |
+
"step": 3050
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.9666719317643342,
|
| 2149 |
+
"grad_norm": 0.15276170947974638,
|
| 2150 |
+
"learning_rate": 9.737500526151525e-06,
|
| 2151 |
+
"loss": 0.1935,
|
| 2152 |
+
"step": 3060
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.9698309903648713,
|
| 2156 |
+
"grad_norm": 0.1280505905081845,
|
| 2157 |
+
"learning_rate": 9.733963562324739e-06,
|
| 2158 |
+
"loss": 0.193,
|
| 2159 |
+
"step": 3070
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.9729900489654083,
|
| 2163 |
+
"grad_norm": 0.13045657850862527,
|
| 2164 |
+
"learning_rate": 9.730403579965508e-06,
|
| 2165 |
+
"loss": 0.1953,
|
| 2166 |
+
"step": 3080
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.9761491075659453,
|
| 2170 |
+
"grad_norm": 0.12920108483379814,
|
| 2171 |
+
"learning_rate": 9.726820596383968e-06,
|
| 2172 |
+
"loss": 0.194,
|
| 2173 |
+
"step": 3090
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.9793081661664824,
|
| 2177 |
+
"grad_norm": 0.1275121663048079,
|
| 2178 |
+
"learning_rate": 9.723214629002103e-06,
|
| 2179 |
+
"loss": 0.1937,
|
| 2180 |
+
"step": 3100
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.9824672247670194,
|
| 2184 |
+
"grad_norm": 0.13153937715884076,
|
| 2185 |
+
"learning_rate": 9.719585695353648e-06,
|
| 2186 |
+
"loss": 0.1927,
|
| 2187 |
+
"step": 3110
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.9856262833675564,
|
| 2191 |
+
"grad_norm": 0.13540077808963083,
|
| 2192 |
+
"learning_rate": 9.715933813084012e-06,
|
| 2193 |
+
"loss": 0.1948,
|
| 2194 |
+
"step": 3120
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.9887853419680935,
|
| 2198 |
+
"grad_norm": 0.13634113133020404,
|
| 2199 |
+
"learning_rate": 9.712258999950196e-06,
|
| 2200 |
+
"loss": 0.192,
|
| 2201 |
+
"step": 3130
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.9919444005686305,
|
| 2205 |
+
"grad_norm": 0.11908229587933031,
|
| 2206 |
+
"learning_rate": 9.70856127382069e-06,
|
| 2207 |
+
"loss": 0.1937,
|
| 2208 |
+
"step": 3140
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.9951034591691675,
|
| 2212 |
+
"grad_norm": 0.11928897371871516,
|
| 2213 |
+
"learning_rate": 9.704840652675405e-06,
|
| 2214 |
+
"loss": 0.1939,
|
| 2215 |
+
"step": 3150
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 0.9982625177697046,
|
| 2219 |
+
"grad_norm": 0.12957379845580613,
|
| 2220 |
+
"learning_rate": 9.701097154605572e-06,
|
| 2221 |
+
"loss": 0.1934,
|
| 2222 |
+
"step": 3160
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 1.0015795293002685,
|
| 2226 |
+
"grad_norm": 0.12555682464472692,
|
| 2227 |
+
"learning_rate": 9.697330797813665e-06,
|
| 2228 |
+
"loss": 0.2078,
|
| 2229 |
+
"step": 3170
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 1.0047385879008055,
|
| 2233 |
+
"grad_norm": 0.12366696963941619,
|
| 2234 |
+
"learning_rate": 9.693541600613297e-06,
|
| 2235 |
+
"loss": 0.1833,
|
| 2236 |
+
"step": 3180
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 1.0078976465013425,
|
| 2240 |
+
"grad_norm": 0.12387115361971955,
|
| 2241 |
+
"learning_rate": 9.689729581429154e-06,
|
| 2242 |
+
"loss": 0.184,
|
| 2243 |
+
"step": 3190
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 1.0110567051018797,
|
| 2247 |
+
"grad_norm": 0.12394939667356165,
|
| 2248 |
+
"learning_rate": 9.68589475879688e-06,
|
| 2249 |
+
"loss": 0.182,
|
| 2250 |
+
"step": 3200
|
| 2251 |
+
}
|
| 2252 |
+
],
|
| 2253 |
+
"logging_steps": 10,
|
| 2254 |
+
"max_steps": 15830,
|
| 2255 |
+
"num_input_tokens_seen": 0,
|
| 2256 |
+
"num_train_epochs": 5,
|
| 2257 |
+
"save_steps": 200,
|
| 2258 |
+
"stateful_callbacks": {
|
| 2259 |
+
"TrainerControl": {
|
| 2260 |
+
"args": {
|
| 2261 |
+
"should_epoch_stop": false,
|
| 2262 |
+
"should_evaluate": false,
|
| 2263 |
+
"should_log": false,
|
| 2264 |
+
"should_save": true,
|
| 2265 |
+
"should_training_stop": false
|
| 2266 |
+
},
|
| 2267 |
+
"attributes": {}
|
| 2268 |
+
}
|
| 2269 |
+
},
|
| 2270 |
+
"total_flos": 4.177750985487155e+16,
|
| 2271 |
+
"train_batch_size": 2,
|
| 2272 |
+
"trial_name": null,
|
| 2273 |
+
"trial_params": null
|
| 2274 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49ec8656b2f5b25fb0f58d99a8d027f2fd4ab4b6554e85d3b125d1665b4a4843
|
| 3 |
+
size 8401
|
video_preprocessor_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": null,
|
| 3 |
+
"data_format": "channels_first",
|
| 4 |
+
"default_to_square": true,
|
| 5 |
+
"device": null,
|
| 6 |
+
"do_center_crop": null,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_pad": null,
|
| 10 |
+
"do_rescale": true,
|
| 11 |
+
"do_resize": true,
|
| 12 |
+
"do_sample_frames": false,
|
| 13 |
+
"fps": null,
|
| 14 |
+
"image_mean": [
|
| 15 |
+
0.48145466,
|
| 16 |
+
0.4578275,
|
| 17 |
+
0.40821073
|
| 18 |
+
],
|
| 19 |
+
"image_std": [
|
| 20 |
+
0.26862954,
|
| 21 |
+
0.26130258,
|
| 22 |
+
0.27577711
|
| 23 |
+
],
|
| 24 |
+
"input_data_format": null,
|
| 25 |
+
"max_frames": 768,
|
| 26 |
+
"max_pixels": 12845056,
|
| 27 |
+
"merge_size": 2,
|
| 28 |
+
"min_frames": 4,
|
| 29 |
+
"min_pixels": 3136,
|
| 30 |
+
"num_frames": null,
|
| 31 |
+
"patch_size": 14,
|
| 32 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 33 |
+
"resample": 3,
|
| 34 |
+
"rescale_factor": 0.00392156862745098,
|
| 35 |
+
"size": {
|
| 36 |
+
"longest_edge": 12845056,
|
| 37 |
+
"shortest_edge": 3136
|
| 38 |
+
},
|
| 39 |
+
"size_divisor": null,
|
| 40 |
+
"temporal_patch_size": 2,
|
| 41 |
+
"video_metadata": null,
|
| 42 |
+
"video_processor_type": "Qwen2VLVideoProcessor"
|
| 43 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|