Daporte commited on
Commit
0e82b05
·
verified ·
1 Parent(s): 6cb3fa7

Update prosody_embedding_pipeline.py

Browse files
Files changed (1) hide show
  1. prosody_embedding_pipeline.py +0 -52
prosody_embedding_pipeline.py CHANGED
@@ -5,7 +5,6 @@ import torch
5
  from typing import Dict, Union, List, Optional
6
  from pathlib import Path
7
  import logging
8
- from .prosody_preprocessor import ProsodyPreprocessor, ProsodyConfig
9
  from datasets import Dataset
10
 
11
  logger = logging.getLogger(__name__)
@@ -16,46 +15,15 @@ class ProsodyEmbeddingPipeline(Pipeline):
16
  speaker_stats,
17
  f0_interp,
18
  f0_normalize,
19
- preprocessor: Optional[ProsodyPreprocessor] = None,
20
  stats_dir: Optional[str] = None,
21
  **kwargs
22
  ):
23
  super().__init__(**kwargs)
24
- self.preprocessor = preprocessor or ProsodyPreprocessor()
25
  self.stats_dir = Path(stats_dir) if stats_dir else None
26
  self.speaker_stats = speaker_stats
27
  self.f0_interp = f0_interp
28
  self.f0_normalize = f0_normalize
29
 
30
-
31
- @classmethod
32
- def from_dataset(
33
- cls,
34
- dataset: Dataset,
35
- stats_dir: str = "preprocessor_stats",
36
- **kwargs
37
- ) -> "ProsodyPipeline":
38
- """Initialize pipeline by computing speaker statistics from a dataset"""
39
- logger.info("Initializing pipeline from dataset...")
40
-
41
- preprocessor = ProsodyPreprocessor()
42
-
43
- stats_dir = Path(stats_dir)
44
- stats_dir.mkdir(parents=True, exist_ok=True)
45
-
46
- logger.info("Computing speaker statistics...")
47
- features_dataset, speaker_stats = preprocessor.collect_stats(dataset)
48
-
49
- stats_path = stats_dir / "speaker_stats.pt"
50
- logger.info(f"Saving speaker statistics to {stats_path}")
51
- preprocessor.save_stats(stats_path)
52
-
53
- return cls(
54
- preprocessor=preprocessor,
55
- stats_dir=stats_dir,
56
- model=None,
57
- **kwargs
58
- )
59
 
60
 
61
  def _sanitize_parameters(self, **kwargs):
@@ -229,23 +197,3 @@ class ProsodyEmbeddingPipeline(Pipeline):
229
 
230
  return outputs
231
 
232
-
233
- @classmethod
234
- def from_pretrained(cls, save_directory: Union[str, Path], **kwargs):
235
- """Load a pretrained pipeline"""
236
- save_directory = Path(save_directory)
237
-
238
- config = ProsodyConfig.from_pretrained(save_directory)
239
- preprocessor = ProsodyPreprocessor(config)
240
-
241
- pipeline = cls(
242
- preprocessor=preprocessor,
243
- stats_dir=save_directory,
244
- **kwargs
245
- )
246
-
247
- stats_path = save_directory / "speaker_stats.pt"
248
- if stats_path.exists():
249
- pipeline.speaker_stats = ProsodyPreprocessor.load_stats(stats_path)
250
-
251
- return pipeline
 
5
  from typing import Dict, Union, List, Optional
6
  from pathlib import Path
7
  import logging
 
8
  from datasets import Dataset
9
 
10
  logger = logging.getLogger(__name__)
 
15
  speaker_stats,
16
  f0_interp,
17
  f0_normalize,
 
18
  stats_dir: Optional[str] = None,
19
  **kwargs
20
  ):
21
  super().__init__(**kwargs)
 
22
  self.stats_dir = Path(stats_dir) if stats_dir else None
23
  self.speaker_stats = speaker_stats
24
  self.f0_interp = f0_interp
25
  self.f0_normalize = f0_normalize
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
 
29
  def _sanitize_parameters(self, **kwargs):
 
197
 
198
  return outputs
199