Create pipeline_utils
Browse files- pipeline_utils +120 -0
pipeline_utils
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from typing import List
|
| 4 |
+
import numpy as np
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
@dataclass
|
| 8 |
+
class SpeakerStats:
|
| 9 |
+
f0_mean: float
|
| 10 |
+
f0_std: float
|
| 11 |
+
intensity_mean: float
|
| 12 |
+
intensity_std: float
|
| 13 |
+
|
| 14 |
+
@classmethod
|
| 15 |
+
def from_features(cls, f0_values: List[np.ndarray], intensity_values: List[np.ndarray]):
|
| 16 |
+
|
| 17 |
+
f0_arrays = [np.array(f0) for f0 in f0_values]
|
| 18 |
+
intensity_arrays = [np.array(i) for i in intensity_values]
|
| 19 |
+
|
| 20 |
+
f0_concat = np.concatenate([f0[f0 != 0] for f0 in f0_arrays])
|
| 21 |
+
intensity_concat = np.concatenate(intensity_arrays)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
return cls(
|
| 25 |
+
f0_mean=float(np.mean(f0_concat)),
|
| 26 |
+
f0_std=float(np.std(f0_concat)),
|
| 27 |
+
intensity_mean=float(np.mean(intensity_concat)),
|
| 28 |
+
intensity_std=float(np.std(intensity_concat))
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def compute_speaker_stats(dataset, speaker_column='speaker_id'):
|
| 32 |
+
"""
|
| 33 |
+
Calculate speaker statistics from a preprocessed dataset.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
dataset: HuggingFace dataset containing f0 and intensity features
|
| 37 |
+
speaker_column: Name of the speaker ID column (default: 'speaker')
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
Dict[str, SpeakerStats]: Dictionary mapping speaker IDs to their statistics
|
| 41 |
+
"""
|
| 42 |
+
speaker_features = {}
|
| 43 |
+
|
| 44 |
+
# Group features by speaker
|
| 45 |
+
for item in dataset:
|
| 46 |
+
speaker_id = item[speaker_column]
|
| 47 |
+
if speaker_id not in speaker_features:
|
| 48 |
+
speaker_features[speaker_id] = {'f0': [], 'intensity': []}
|
| 49 |
+
|
| 50 |
+
speaker_features[speaker_id]['f0'].append(item['f0'])
|
| 51 |
+
speaker_features[speaker_id]['intensity'].append(item['intensity'])
|
| 52 |
+
|
| 53 |
+
# Calculate stats per speaker
|
| 54 |
+
speaker_stats = {
|
| 55 |
+
spk: SpeakerStats.from_features(
|
| 56 |
+
feats['f0'],
|
| 57 |
+
feats['intensity']
|
| 58 |
+
)
|
| 59 |
+
for spk, feats in speaker_features.items()
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
return speaker_stats
|
| 63 |
+
|
| 64 |
+
def plot_reconstruction(result, sample_idx):
|
| 65 |
+
# Get F0 data
|
| 66 |
+
input_f0 = result['input_features']['f0_orig']
|
| 67 |
+
output_f0 = np.array(result['f0_recon'])
|
| 68 |
+
|
| 69 |
+
length = len(input_f0)
|
| 70 |
+
truncated_length = (length // 16) * 16
|
| 71 |
+
|
| 72 |
+
input_f0 = np.array(input_f0[:truncated_length])
|
| 73 |
+
|
| 74 |
+
# Get intensity data
|
| 75 |
+
input_intensity = np.array(result['input_features']['intensity_orig'][:truncated_length])
|
| 76 |
+
output_intensity = np.array(result['intensity_recon'])
|
| 77 |
+
|
| 78 |
+
time = np.arange(len(input_f0))
|
| 79 |
+
|
| 80 |
+
# Create figure with two subplots
|
| 81 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(15, 10))
|
| 82 |
+
|
| 83 |
+
# Plot F0
|
| 84 |
+
ax1.plot(time, input_f0, label='Original F0', alpha=0.7)
|
| 85 |
+
ax1.plot(time, output_f0, label='Reconstructed F0', alpha=0.7)
|
| 86 |
+
|
| 87 |
+
# Highlight large differences in F0 (>20% of original)
|
| 88 |
+
f0_diff_percent = np.abs(input_f0 - output_f0) / (input_f0 + 1e-8) * 100 # Add small epsilon to avoid division by zero
|
| 89 |
+
large_diff_mask = (f0_diff_percent > 20)
|
| 90 |
+
if np.any(large_diff_mask):
|
| 91 |
+
ax1.fill_between(time, input_f0, output_f0,
|
| 92 |
+
where=large_diff_mask,
|
| 93 |
+
color='red', alpha=0.3,
|
| 94 |
+
label='Diff > 20%')
|
| 95 |
+
|
| 96 |
+
ax1.set_title(f'F0 Reconstruction (Sample {sample_idx})')
|
| 97 |
+
ax1.set_ylabel('Frequency (Hz)')
|
| 98 |
+
ax1.legend()
|
| 99 |
+
|
| 100 |
+
# Plot Intensity
|
| 101 |
+
ax2.plot(time, input_intensity, label='Original Intensity', alpha=0.7)
|
| 102 |
+
ax2.plot(time, output_intensity, label='Reconstructed Intensity', alpha=0.7)
|
| 103 |
+
|
| 104 |
+
# Highlight large differences in intensity (>20% of original)
|
| 105 |
+
intensity_diff_percent = np.abs(input_intensity - output_intensity) / (np.abs(input_intensity) + 1e-8) * 100
|
| 106 |
+
intensity_large_diff = intensity_diff_percent > 20
|
| 107 |
+
if np.any(intensity_large_diff):
|
| 108 |
+
ax2.fill_between(time, input_intensity, output_intensity,
|
| 109 |
+
where=intensity_large_diff,
|
| 110 |
+
color='red', alpha=0.3,
|
| 111 |
+
label='Diff > 20%')
|
| 112 |
+
|
| 113 |
+
ax2.set_title('Intensity Reconstruction')
|
| 114 |
+
ax2.set_ylabel('Intensity (dB)')
|
| 115 |
+
ax2.set_xlabel('Time (frames)')
|
| 116 |
+
ax2.legend()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
plt.tight_layout()
|
| 120 |
+
return fig
|