Create quantizer_config.py
Browse files- quantizer_config.py +167 -0
quantizer_config.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
from typing import List, Optional
|
| 4 |
+
|
| 5 |
+
class QuantizerConfig(PretrainedConfig):
|
| 6 |
+
model_type = "prosody_quantizer"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
# VQ parameters
|
| 11 |
+
l_bins: int = 320,
|
| 12 |
+
emb_width: int = 64,
|
| 13 |
+
mu: float = 0.99,
|
| 14 |
+
levels: int = 1,
|
| 15 |
+
|
| 16 |
+
# Encoder parameters
|
| 17 |
+
encoder_input_emb_width: int = 3,
|
| 18 |
+
encoder_output_emb_width: int = 64,
|
| 19 |
+
encoder_levels: int = 1,
|
| 20 |
+
encoder_downs_t: List[int] = [4],
|
| 21 |
+
encoder_strides_t: List[int] = [2],
|
| 22 |
+
encoder_width: int = 32,
|
| 23 |
+
encoder_depth: int = 4,
|
| 24 |
+
encoder_m_conv: float = 1.0,
|
| 25 |
+
encoder_dilation_growth_rate: int = 3,
|
| 26 |
+
|
| 27 |
+
# Decoder parameters
|
| 28 |
+
decoder_input_emb_width: int = 3,
|
| 29 |
+
decoder_output_emb_width: int = 64,
|
| 30 |
+
decoder_levels: int = 1,
|
| 31 |
+
decoder_downs_t: List[int] = [4],
|
| 32 |
+
decoder_strides_t: List[int] = [2],
|
| 33 |
+
decoder_width: int = 32,
|
| 34 |
+
decoder_depth: int = 4,
|
| 35 |
+
decoder_m_conv: float = 1.0,
|
| 36 |
+
decoder_dilation_growth_rate: int = 3,
|
| 37 |
+
|
| 38 |
+
# Training parameters
|
| 39 |
+
lambda_commit: float = 0.02,
|
| 40 |
+
f0_normalize: bool = True,
|
| 41 |
+
intensity_normalize: bool = True,
|
| 42 |
+
multispkr: str = "single",
|
| 43 |
+
f0_feats: bool = False,
|
| 44 |
+
f0_median: bool = False,
|
| 45 |
+
|
| 46 |
+
# Optional training hyperparameters
|
| 47 |
+
learning_rate: float = 0.0002,
|
| 48 |
+
adam_b1: float = 0.8,
|
| 49 |
+
adam_b2: float = 0.99,
|
| 50 |
+
lr_decay: float = 0.999,
|
| 51 |
+
**kwargs
|
| 52 |
+
):
|
| 53 |
+
super().__init__(**kwargs)
|
| 54 |
+
|
| 55 |
+
# VQ parameters
|
| 56 |
+
self.l_bins = l_bins
|
| 57 |
+
self.emb_width = emb_width
|
| 58 |
+
self.mu = mu
|
| 59 |
+
self.levels = levels
|
| 60 |
+
|
| 61 |
+
# Encoder parameters
|
| 62 |
+
self.encoder_input_emb_width = encoder_input_emb_width
|
| 63 |
+
self.encoder_output_emb_width = encoder_output_emb_width
|
| 64 |
+
self.encoder_levels = encoder_levels
|
| 65 |
+
self.encoder_downs_t = encoder_downs_t
|
| 66 |
+
self.encoder_strides_t = encoder_strides_t
|
| 67 |
+
self.encoder_width = encoder_width
|
| 68 |
+
self.encoder_depth = encoder_depth
|
| 69 |
+
self.encoder_m_conv = encoder_m_conv
|
| 70 |
+
self.encoder_dilation_growth_rate = encoder_dilation_growth_rate
|
| 71 |
+
|
| 72 |
+
# Decoder parameters
|
| 73 |
+
self.decoder_input_emb_width = decoder_input_emb_width
|
| 74 |
+
self.decoder_output_emb_width = decoder_output_emb_width
|
| 75 |
+
self.decoder_levels = decoder_levels
|
| 76 |
+
self.decoder_downs_t = decoder_downs_t
|
| 77 |
+
self.decoder_strides_t = decoder_strides_t
|
| 78 |
+
self.decoder_width = decoder_width
|
| 79 |
+
self.decoder_depth = decoder_depth
|
| 80 |
+
self.decoder_m_conv = decoder_m_conv
|
| 81 |
+
self.decoder_dilation_growth_rate = decoder_dilation_growth_rate
|
| 82 |
+
|
| 83 |
+
# Training parameters
|
| 84 |
+
self.lambda_commit = lambda_commit
|
| 85 |
+
self.f0_normalize = f0_normalize
|
| 86 |
+
self.intensity_normalize = intensity_normalize
|
| 87 |
+
self.multispkr = multispkr
|
| 88 |
+
self.f0_feats = f0_feats
|
| 89 |
+
self.f0_median = f0_median
|
| 90 |
+
|
| 91 |
+
# Training hyperparameters
|
| 92 |
+
self.learning_rate = learning_rate
|
| 93 |
+
self.adam_b1 = adam_b1
|
| 94 |
+
self.adam_b2 = adam_b2
|
| 95 |
+
self.lr_decay = lr_decay
|
| 96 |
+
|
| 97 |
+
@property
|
| 98 |
+
def f0_vq_params(self):
|
| 99 |
+
return {
|
| 100 |
+
"l_bins": self.l_bins,
|
| 101 |
+
"emb_width": self.emb_width,
|
| 102 |
+
"mu": self.mu,
|
| 103 |
+
"levels": self.levels
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def f0_encoder_params(self):
|
| 108 |
+
return {
|
| 109 |
+
"input_emb_width": self.encoder_input_emb_width,
|
| 110 |
+
"output_emb_width": self.encoder_output_emb_width,
|
| 111 |
+
"levels": self.encoder_levels,
|
| 112 |
+
"downs_t": self.encoder_downs_t,
|
| 113 |
+
"strides_t": self.encoder_strides_t,
|
| 114 |
+
"width": self.encoder_width,
|
| 115 |
+
"depth": self.encoder_depth,
|
| 116 |
+
"m_conv": self.encoder_m_conv,
|
| 117 |
+
"dilation_growth_rate": self.encoder_dilation_growth_rate
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
@property
|
| 121 |
+
def f0_decoder_params(self):
|
| 122 |
+
return {
|
| 123 |
+
"input_emb_width": self.decoder_input_emb_width,
|
| 124 |
+
"output_emb_width": self.decoder_output_emb_width,
|
| 125 |
+
"levels": self.decoder_levels,
|
| 126 |
+
"downs_t": self.decoder_downs_t,
|
| 127 |
+
"strides_t": self.decoder_strides_t,
|
| 128 |
+
"width": self.decoder_width,
|
| 129 |
+
"depth": self.decoder_depth,
|
| 130 |
+
"m_conv": self.decoder_m_conv,
|
| 131 |
+
"dilation_growth_rate": self.decoder_dilation_growth_rate
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
@classmethod
|
| 135 |
+
def from_yaml(cls, yaml_path: str):
|
| 136 |
+
"""Load config from yaml file"""
|
| 137 |
+
import yaml
|
| 138 |
+
with open(yaml_path, 'r') as f:
|
| 139 |
+
config = yaml.safe_load(f)
|
| 140 |
+
|
| 141 |
+
# Convert yaml config to kwargs
|
| 142 |
+
kwargs = {
|
| 143 |
+
# VQ params
|
| 144 |
+
**{k: v for k, v in config['f0_vq_params'].items()},
|
| 145 |
+
|
| 146 |
+
# Encoder params
|
| 147 |
+
**{f"encoder_{k}": v for k, v in config['f0_encoder_params'].items()},
|
| 148 |
+
|
| 149 |
+
# Decoder params
|
| 150 |
+
**{f"decoder_{k}": v for k, v in config['f0_decoder_params'].items()},
|
| 151 |
+
|
| 152 |
+
# Training params
|
| 153 |
+
"lambda_commit": config.get('lambda_commit', 0.02),
|
| 154 |
+
"f0_normalize": config.get('f0_normalize', True),
|
| 155 |
+
"intensity_normalize": config.get('intensity_normalize', True),
|
| 156 |
+
"multispkr": config.get('multispkr', "single"),
|
| 157 |
+
"f0_feats": config.get('f0_feats', False),
|
| 158 |
+
"f0_median": config.get('f0_median', False),
|
| 159 |
+
|
| 160 |
+
# Training hyperparams
|
| 161 |
+
"learning_rate": config.get('learning_rate', 0.0002),
|
| 162 |
+
"adam_b1": config.get('adam_b1', 0.8),
|
| 163 |
+
"adam_b2": config.get('adam_b2', 0.99),
|
| 164 |
+
"lr_decay": config.get('lr_decay', 0.999),
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
return cls(**kwargs)
|