Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from: https://github.com/bair-climate-initiative/scale-mae/blob/main/mae/main_finetune.py
|
| 2 |
+
import torch
|
| 3 |
+
from timm.models.layers import trunc_normal_
|
| 4 |
+
from functools import partial
|
| 5 |
+
import timm.models.vision_transformer
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from timm.models.vision_transformer import Block, PatchEmbed
|
| 8 |
+
import os
|
| 9 |
+
from torchvision.io import read_image
|
| 10 |
+
import numpy as np
|
| 11 |
+
import sys
|
| 12 |
+
import random
|
| 13 |
+
import pytorch_lightning as pl
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 16 |
+
|
| 17 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
| 18 |
+
"""
|
| 19 |
+
grid_size: int of the grid height and width
|
| 20 |
+
return:
|
| 21 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 22 |
+
"""
|
| 23 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 24 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 25 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 26 |
+
grid = np.stack(grid, axis=0)
|
| 27 |
+
|
| 28 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 29 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 30 |
+
if cls_token:
|
| 31 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 32 |
+
return pos_embed
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_2d_sincos_pos_embed_with_resolution(
|
| 36 |
+
embed_dim, grid_size, res, cls_token=False, device="cpu"
|
| 37 |
+
):
|
| 38 |
+
"""
|
| 39 |
+
grid_size: int of the grid height and width
|
| 40 |
+
res: array of size n, representing the resolution of a pixel (say, in meters),
|
| 41 |
+
return:
|
| 42 |
+
pos_embed: [n,grid_size*grid_size, embed_dim] or [n,1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 43 |
+
"""
|
| 44 |
+
# res = torch.FloatTensor(res).to(device)
|
| 45 |
+
res = res.to(device)
|
| 46 |
+
grid_h = torch.arange(grid_size, dtype=torch.float32, device=device)
|
| 47 |
+
grid_w = torch.arange(grid_size, dtype=torch.float32, device=device)
|
| 48 |
+
grid = torch.meshgrid(
|
| 49 |
+
grid_w, grid_h, indexing="xy"
|
| 50 |
+
) # here h goes first,direction reversed for numpy
|
| 51 |
+
grid = torch.stack(grid, dim=0) # 2 x h x w
|
| 52 |
+
|
| 53 |
+
# grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 54 |
+
grid = torch.einsum("chw,n->cnhw", grid, res) # 2 x n x h x w
|
| 55 |
+
_, n, h, w = grid.shape
|
| 56 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid_torch(
|
| 57 |
+
embed_dim, grid
|
| 58 |
+
) # # (nxH*W, D/2)
|
| 59 |
+
pos_embed = pos_embed.reshape(n, h * w, embed_dim)
|
| 60 |
+
if cls_token:
|
| 61 |
+
pos_embed = torch.cat(
|
| 62 |
+
[
|
| 63 |
+
torch.zeros(
|
| 64 |
+
[n, 1, embed_dim], dtype=torch.float32, device=pos_embed.device
|
| 65 |
+
),
|
| 66 |
+
pos_embed,
|
| 67 |
+
],
|
| 68 |
+
dim=1,
|
| 69 |
+
)
|
| 70 |
+
return pos_embed
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 74 |
+
assert embed_dim % 2 == 0
|
| 75 |
+
|
| 76 |
+
# use half of dimensions to encode grid_h
|
| 77 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 78 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 79 |
+
|
| 80 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 81 |
+
return emb
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_2d_sincos_pos_embed_from_grid_torch(embed_dim, grid):
|
| 85 |
+
assert embed_dim % 2 == 0
|
| 86 |
+
|
| 87 |
+
# use half of dimensions to encode grid_h
|
| 88 |
+
emb_h = get_1d_sincos_pos_embed_from_grid_torch(
|
| 89 |
+
embed_dim // 2, grid[0]
|
| 90 |
+
) # (H*W, D/2)
|
| 91 |
+
emb_w = get_1d_sincos_pos_embed_from_grid_torch(
|
| 92 |
+
embed_dim // 2, grid[1]
|
| 93 |
+
) # (H*W, D/2)
|
| 94 |
+
|
| 95 |
+
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D)
|
| 96 |
+
return emb
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos):
|
| 100 |
+
"""
|
| 101 |
+
embed_dim: output dimension for each position
|
| 102 |
+
pos: a list of positions to be encoded: size (M,)
|
| 103 |
+
out: (M, D)
|
| 104 |
+
"""
|
| 105 |
+
assert embed_dim % 2 == 0
|
| 106 |
+
old_shape = pos
|
| 107 |
+
omega = torch.arange(embed_dim // 2, dtype=torch.float32, device=pos.device)
|
| 108 |
+
omega /= embed_dim / 2.0
|
| 109 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 110 |
+
|
| 111 |
+
pos = pos.reshape(-1) # (M,)
|
| 112 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 113 |
+
|
| 114 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
| 115 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
| 116 |
+
|
| 117 |
+
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
| 118 |
+
return emb
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 122 |
+
"""
|
| 123 |
+
embed_dim: output dimension for each position
|
| 124 |
+
pos: a list of positions to be encoded: size (M,)
|
| 125 |
+
out: (M, D)
|
| 126 |
+
"""
|
| 127 |
+
assert embed_dim % 2 == 0
|
| 128 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
| 129 |
+
omega /= embed_dim / 2.0
|
| 130 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 131 |
+
|
| 132 |
+
pos = pos.reshape(-1) # (M,)
|
| 133 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 134 |
+
|
| 135 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 136 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 137 |
+
|
| 138 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 139 |
+
return emb
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# --------------------------------------------------------
|
| 143 |
+
# Interpolate position embeddings for high-resolution
|
| 144 |
+
# References:
|
| 145 |
+
# DeiT: https://github.com/facebookresearch/deit
|
| 146 |
+
# --------------------------------------------------------
|
| 147 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
| 148 |
+
if "pos_embed" in checkpoint_model:
|
| 149 |
+
pos_embed_checkpoint = checkpoint_model["pos_embed"]
|
| 150 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
| 151 |
+
num_patches = model.patch_embed.num_patches
|
| 152 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
| 153 |
+
# height (== width) for the checkpoint position embedding
|
| 154 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
| 155 |
+
# height (== width) for the new position embedding
|
| 156 |
+
new_size = int(num_patches**0.5)
|
| 157 |
+
# class_token and dist_token are kept unchanged
|
| 158 |
+
if orig_size != new_size:
|
| 159 |
+
print(
|
| 160 |
+
"Position interpolate from %dx%d to %dx%d"
|
| 161 |
+
% (orig_size, orig_size, new_size, new_size)
|
| 162 |
+
)
|
| 163 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
| 164 |
+
# only the position tokens are interpolated
|
| 165 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
| 166 |
+
pos_tokens = pos_tokens.reshape(
|
| 167 |
+
-1, orig_size, orig_size, embedding_size
|
| 168 |
+
).permute(0, 3, 1, 2)
|
| 169 |
+
pos_tokens = torch.nn.functional.interpolate(
|
| 170 |
+
pos_tokens,
|
| 171 |
+
size=(new_size, new_size),
|
| 172 |
+
mode="bicubic",
|
| 173 |
+
align_corners=False,
|
| 174 |
+
)
|
| 175 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
| 176 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
| 177 |
+
checkpoint_model["pos_embed"] = new_pos_embed
|
| 178 |
+
|
| 179 |
+
class PatchEmbedUnSafe(PatchEmbed):
|
| 180 |
+
"""Image to Patch Embedding"""
|
| 181 |
+
|
| 182 |
+
def forward(self, x):
|
| 183 |
+
B, C, H, W = x.shape
|
| 184 |
+
# Dropped size check in timm
|
| 185 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
| 186 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 187 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 188 |
+
return x
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
|
| 192 |
+
"""Vision Transformer with support for global average pooling"""
|
| 193 |
+
|
| 194 |
+
def __init__(
|
| 195 |
+
self, cls_token_flag=False, global_pool=False, patch_size=16, in_chans=3, embed_dim=1024, **kwargs
|
| 196 |
+
):
|
| 197 |
+
super().__init__(embed_dim=embed_dim, **kwargs)
|
| 198 |
+
self.cls_token_flag = cls_token_flag
|
| 199 |
+
|
| 200 |
+
self.patch_embed = PatchEmbedUnSafe(
|
| 201 |
+
img_size=224,
|
| 202 |
+
patch_size=patch_size,
|
| 203 |
+
in_chans=in_chans,
|
| 204 |
+
embed_dim=embed_dim,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
self.global_pool = global_pool
|
| 208 |
+
if self.global_pool:
|
| 209 |
+
norm_layer = kwargs["norm_layer"]
|
| 210 |
+
embed_dim = embed_dim
|
| 211 |
+
self.fc_norm = norm_layer(embed_dim)
|
| 212 |
+
|
| 213 |
+
del self.norm # remove the original norm
|
| 214 |
+
|
| 215 |
+
del self.head
|
| 216 |
+
if self.cls_token_flag == False:
|
| 217 |
+
del self.cls_token
|
| 218 |
+
del self.pos_embed
|
| 219 |
+
|
| 220 |
+
def forward_features(self, x, input_res=None):
|
| 221 |
+
B, _, h, w = x.shape
|
| 222 |
+
x = self.patch_embed(x)
|
| 223 |
+
input_res = input_res.cpu()
|
| 224 |
+
|
| 225 |
+
num_patches = int(
|
| 226 |
+
(h * w) / (self.patch_embed.patch_size[0] * self.patch_embed.patch_size[1])
|
| 227 |
+
)
|
| 228 |
+
pos_embed = get_2d_sincos_pos_embed_with_resolution(
|
| 229 |
+
x.shape[-1],
|
| 230 |
+
int(num_patches**0.5),
|
| 231 |
+
input_res,
|
| 232 |
+
cls_token=self.cls_token_flag,
|
| 233 |
+
device=x.device,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
if self.cls_token_flag:
|
| 237 |
+
cls_tokens = self.cls_token.expand(
|
| 238 |
+
B, -1, -1
|
| 239 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 240 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 241 |
+
x = x + pos_embed
|
| 242 |
+
x = self.pos_drop(x)
|
| 243 |
+
|
| 244 |
+
for blk in self.blocks:
|
| 245 |
+
x = blk(x)
|
| 246 |
+
|
| 247 |
+
#x = x[:, 1:, :].mean(dim=1) # global pool without cls token
|
| 248 |
+
|
| 249 |
+
outcome = self.fc_norm(x)
|
| 250 |
+
return outcome
|
| 251 |
+
|
| 252 |
+
def forward(self, x, input_res=None):
|
| 253 |
+
x = self.forward_features(x, input_res=input_res)
|
| 254 |
+
return x
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def vit_large_patch16(**kwargs):
|
| 258 |
+
model = VisionTransformer(
|
| 259 |
+
patch_size=16,
|
| 260 |
+
embed_dim=1024,
|
| 261 |
+
depth=24,
|
| 262 |
+
num_heads=16,
|
| 263 |
+
mlp_ratio=4,
|
| 264 |
+
qkv_bias=True,
|
| 265 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 266 |
+
**kwargs
|
| 267 |
+
)
|
| 268 |
+
return model
|
| 269 |
+
|
| 270 |
+
def get_ScaleMAE_model(global_pool=True, cls_token=True):
|
| 271 |
+
|
| 272 |
+
model = vit_large_patch16(
|
| 273 |
+
num_classes=1000,
|
| 274 |
+
drop_path_rate=0.1,
|
| 275 |
+
global_pool=global_pool,
|
| 276 |
+
cls_token_flag = cls_token
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
if global_pool:
|
| 280 |
+
assert set(msg.missing_keys) == {
|
| 281 |
+
"head.weight",
|
| 282 |
+
"head.bias",
|
| 283 |
+
"fc_norm.weight",
|
| 284 |
+
"fc_norm.bias",
|
| 285 |
+
}
|
| 286 |
+
else:
|
| 287 |
+
pass
|
| 288 |
+
|
| 289 |
+
return model
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class ScaleMAE_baseline(pl.LightningModule, PyTorchModelHubMixin):
|
| 293 |
+
def __init__(self, feat_dim=1024, fc_dim=1024, global_pool=False, cls_token_flag=True):
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.model = get_ScaleMAE_model(global_pool= global_pool,cls_token = cls_token_flag)
|
| 296 |
+
|
| 297 |
+
def forward(self,x,patch_size,input_res=10.0):
|
| 298 |
+
|
| 299 |
+
input_res = torch.tensor([10.0]).to(x.device)
|
| 300 |
+
x = self.model(x,input_res=input_res)
|
| 301 |
+
|
| 302 |
+
return x
|